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Supervised Learning

Task: Determine a function, f(or parameters to a function) such that /x)=v



Ingredients of a TensorFlow

tensors*

variables - persistent
mutable tensors

constants - constant

placeholders - from data

operations

an abstract computation
(e.g. matrix multiply, add)
executed by device kernels

* technically, still operations

session devices

defines the environment in the specific devices (cpus or
which operations run. gpus) on which to run the
(like a Spark context) session.




Review: Gradient Descent

| _— Gradient

W (rasbt, http://rasbt.github.io/mlixtend/user_guide/general_concepts/gradient-optimization/)



Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:
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Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

N
3 = ar g'm.‘i'n.lcg{z (y? _ y*? )'2 }

matrix multiply

N
y; = X;3 Thus: B = a:rg-m.z"n.g{Z (yi — Xi8)*}
i=0
In standard linear equation:
SRR L1 117
y = mz + b let ' =ax 4+ |1,1,..., 1|y

then, y = ma’
(if we add a column of 1s, mx + b is just matmul(m, x))



Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:
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Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

N
3 = arg '77?.2"7‘2.5{ Z (yi — gz ) 7 }
i N
1=0

How to update?  Snew = Bprev — @ * grad



Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

N
3 = ar g'mi'n.ld{z (y? _ g? )2 }

N
y; = X;8 Thus: B = argming{» (yi — X:8)*}
1=0

How to Update? ,."‘.:—))new — ..f}prez_r — (X * gl‘ad —————————————————————

(for gradient descent) “‘learning rate”




Weights Derived from Gradients

Ridge Regression (L2 Penalized linear regression, /\‘ ‘J’) “; )
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1. Matrix Solution:

B = (XTX + M) XTy




Weights Derived from Gradients

Ridge Regression (L2 Penalized linear regression, )\‘ \j| [%)

4 N
N m

gridge =(n‘gm.'z'.'n,5{E (yi — E Ti;3;)° + A E 3 1
i=1 7=1

2. Gradient descent solution

(Mirrors many parameter optimization problems.)
\. J

1. Matrix Solution:

B = (XTX + M) XTy




Weights Derived from Gradients

Ridge Regression (L2 Penalized linear regression, /\‘ \j| \%)

( )

I

N
‘A' I " . 2 ; 2
grid =(ugmz.n.,j-{]5 (yi — E Ti;3;)° + A E 351
i=1

7=1

Gradient descent needs to solve.

(Mirrors many parameter optimization problems.
. J

TensorFlow has built-in ability to derive gradients given a|cost function




Weights Derived from Gradients

Ridge Regression (L2 Penalized linear regression, )\‘ \j| [%)

( )

It

N
aridge __ . 9
g —(ugmzn.,j{]g (yi — E zi; 3;) /\E 37}
i=1

=1

Gradient descent needs to solve.

(Mirrors many parameter optimization problems.
. J

TensorFlow has built-in ability to derive gradients given a|cost function

tf.gradients(cost, [params])



Weights Derived from Gradients

Paregeters Periodic |
O - - ) checkpoint
Read params Apply grads
’_’C’Q:\ Queue
] > ))))) Dist. FS
Preprocessing Training

TensorFlow has built-in ability to derive gradients given a cost function.

tf.gradients(cost, [params])
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Options for distribution

1. Distribute copies of entire dataset
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Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.
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talked about much because it's
1. Distribute copies of entire dataset - mostly as easy as it sounds.

a. Train over all with different hyperparameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories
2. Distribute data Preferred method for big data or
a. Each node finds parameters foméla\ very complex models (i.e.
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. Lala. Far 1Ism.. y
i. Distributed All-Reduce parameters).
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Intermediar data.



Model Parallelism

Multiple devices on multiple machines

with tf.device(“/cpu:1”)

i with tf.device(“/gpu:0”)
: beta=tf.Variable(...)

i y pred=tf.matmul(beta,X)




Data Parallelism

beta=tf.Variable(...) i

: I
beta=tf.Variable(...) i i
: ' pred=tf.matmul(beta,X)

pred=tf.matmul (beta, X)

beta=tf.Variable(...) i
pred=tf.matmul(beta,X) |




Data Parallelism

beta=tf.Variable(...) i

: I
beta=tf.Variable(...) i i
: ' pred=tf.matmul(beta,X)

pred=tf.matmul (beta, X)

beta=tf.Variable(...) i
pred=tf.matmul(beta,X) |
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Distributing Data
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learn parameters (i.e. weights),
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Distributing Data
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Gradient Descent for Linear Regression

(Geron, 2017)



Gradient Descent for Linear Regression

Batch Gradient Descent
Stochastic Gradient Descent: One example at a time

Mini-batch Gradient Descent: k examples at a time.

38 s = Stochastic

3.6 +—— Mini-batch
3.4 | e==e Batch

91 3.2
3.0

2.8}
2.6

2.4+

2.5 310 315 410 4.5
0, (Geron, 2017)
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Gradient Descent for Linear Regression

Batch Gradient Descent

Stochastic Gradient Descent: One example at a time

Mini-batch Gradient Descent: k examples at a time.
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(Geron, 2017)



Distributed TensorFlow

10000 |- I 1
A % 3-1
1000 ..t /I"—
g : - - §-  Scalar
3 =z —4§  Sparse 1GB
@ 100 —4  Sparse 16GB
5 —4— Dense 100M
3 Dense 1GB
10
1 | | | | | |
1 2 5 10 25 50 100

Number of workers

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow:
A System for Large-Scale Machine Learning. In OSDI (Vol. 16, pp. 265-283).
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Distributed TensorFlow

Distributed: m
e Locally: Across processors (cpus, gpus, tpus)

e Across a Cluster: Multiple machine with multiple processors

discussed
previously




Local Distribution

Multiple devices on single machine

Program 1 Program 2




Local Distribution

Multiple devices on single machine

with tf.device(“/cpu:1”)
beta=tf.Variable(...)

with tf.device(“/gpu:0”)
y _pred=tf.matmul (beta,X)




Cluster Distribution

Multiple devices on multiple machines

iwith tf.device(“/cpu:1”)
: beta=tf.Variable(...)

iwith tf.device(“/gpu:0”)
! y pred=tf.matmul(beta,X)

Machine B




Distributed TensorFlow

Distributed:

e Locally: Across processors (cpus, gpus, tpus)
e Across a Cluster: Multiple machine with multiple processors

Parallelisms:

e Data Parallelism: All nodes doing same thing on different subsets of data
e Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

e Asynchronous Parameter Server
e Synchronous AllReduce (doesn’t work with Model Parallelism)



Distributed TensorFlow

Parallelisms:

e Data Parallelism: All nodes doing same thing on different subsets of data
e Graph/Model Parallelism: Different portions of model on different devices



Parallelisms
Model Parallelism

Multiple devices on multiple machines

iwith tf.device(“/cpu:1”)
: beta=tf.Variable(...)

iwith tf.device(“/gpu:0”)
! y pred=tf.matmul(beta,X)




Parallelisms Data Parallelism

beta=tf.Variable(...) i

: I
beta=tf.Variable(...) i i
: ' pred=tf.matmul(beta,X)

pred=tf.matmul (beta, X)

beta=tf.Variable(...) i
pred=tf.matmul(beta,X) |
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Distributed TensorFlow

Model Updates:

e Asynchronous Parameter Server
e Synchronous AllReduce (doesn’t work with Model Parallelism)



Asynchronous Parameter Server

“pS” “Worker"
" task0 task 0 task 1
/TF Server /TF Server /TF Server
/ Master / Master / Master /
Worker Worker Worker
NG /o T N S

Machine A

(Geron, 2017: HOML: p.324)

Machine B



Asynchronous Parameter Server

“pS” “Worker”
| |

" task O\'\\‘“Q'«D\ task 1

[ Parameter Server: Job is just to maintain
TF Server 'y alues of variables being optimized.

/Master /
Workers: do all the numerical “work” and
Worker / Qend updates to the parameter server. )
B / N S

Machine A (Geron, 2017: HOML.: p.324) Machine B



Synchronous All Reduce

“Worker” Worker Worker Worker

. ™\ /| Workers do computation, send parameter A
TF Server TF | updates to other workers, and store parameter

/ Master / ﬁ updates from other workers. Requires low
latency communication.

2 VVIorker // \/ VIVorker /) L WorIker /)
0., v 0.

Machine A (Geron, 2017: HOML.: p.324) Machine B



Synchronous All Reduce

N Worker Worker

2N
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1
| GPUO
Gradients batche 0
TF Se
GPU7 }
i Mas Gradients batche_7
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VV batch@_6
Gradients
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batch@_5
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(Dowling, 2017: Distributed TensorFlow, .
A Machine B



Distributed TF: Full Pipeline

Periodic
checkpoint

Paraén)eters
o o

Read params Apply grads

Shuffle queue

Dist. FS

“ Input
deits Reader

Preprocessing Training

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow:
A System for Large-Scale Machine Learning. In OSDI (Vol. 16, pp. 265-283).



REViEW: DiStribUtEd M L Done very often in practice. Not

talked about much because it's
1. Distribute copies of entire dataset - mostly as easy as it sounds.

a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute da.ta \d\m\ Preferred method for big data or
a. Eachnode flnd§ parameters.for subset of da very complex models (i.e.
- Neeﬂs nF@Ch Ismé:uulo sm remeer models with many internal
I @ al zear) !@SEQrver y
i. Distributed All-Reduce parameters).

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal
3. Distribute model or individual operations (e.g. matrix multiply)

Pro: PaiMlodel Parellelism:d  Con: High communication for transferring
Intermediar data.
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Ethics in Big Data

Bias

Privacy

Ethical Research Practice



Ethics in Big Data

Tvpes of bias:

e Outcome Disparity: Predicted distribution given A,
are dissimilar from ideal distribution given A
o Selection bias
o Label bias
o Over-amplification

e Error Disparity: Predicts less accurate for authors of given demographics.

e Semantic Bias: Representations of meaning store demographic associations.
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model - Tha \WSJ Effect

accuracy

Jorgensen/Hovy/Sogaard, 2015
Hovy & Segaard, 2015

distance from “standard” WSJ author demog»’ré‘pﬂh“i\cs |
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model - Tha \WSJ Effect

accuracy

Jorgensen/Hovy/Sogaard, 2015
Hovy & Segaard, 2015
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Two Examples

R

model

accuracy Th c W I-

VALUE
AGENT 1 AGENT = WOMAN
FOOD ‘ FOOD | MEAT FOOD 7
HEAT @ — HEAT = STOVE [E=
TOOL | KNIFE

HEAT STOVE | =
TOOL | SPATULA = TOOL  SPATULAT
PLACE KITCHEN ‘ PLACE OUTSIDE A PLACE KITCHEN

Zhao, Jieyu, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and
Kai-Wei Chang. "Men Also Like Shopping: Reducing Gender Bias
Amplification using Corpus-level Constraints." In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language
Processing. 2017.

7;t\‘§‘ ==

distance from “standard” WSJ author demog"r‘é‘bﬁvi\és |



Two Examples

\

Y

PP 2y ey

model The VV

accuracy

COOKING

AGENT | WOMAN [ AGENT | WOMAN [ g [ AGENT | WOMAN |
FOOD | FRUIT [= FOOD = MEAT [ FOOD Z

HEAT @ HEAT | STOVE [= HEAT | STOVE
TOOL | KNIFE TOOL | SPATULA (= TOOL | SPATULA
PLACE | KITCHEN il PLACE OUTSIDE il PLACE  KITCHEN

Zhao, Jieyu, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and
Kai-Wei Chang. "Men Also Like Shopping: Reducing Gender Bias
Amplification using Corpus-level Constraints." In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language

“EI'I'OI' Disparity” Processing. 2017.

distance from “standard” WSJ author demog}é‘bﬁi\és
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Our data and models are (human) biased.

“Outcome Disparity”

Person-level
s attribute = 1
= attribute = 2

|deal Proportion Result from Prediction

“Error Disparity”

Ideal Error Rates Error Rates from Prediction



Predictive Bias Framework

outcome disparity
The distribution of outcomes, given attribute 4,
is dissimilar than the ideal distribution:

Q(Y|4) #P(Y|4)

Target Population

biased
predict outcomes

A

features

target
(Application Side)

target

error disparity
The distribution of error (€) over at least two
different values of an attribute (A4) are unequal:

Qe }d) #Qlc|4)

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In
ACL-2020: Proceedings of the Association for Computational Linguistics.



Predictive Bias Framework

outcome disparity
The distribution of outcomes, given attribute 4,
is dissimilar than the ideal distribution:
Q(Y,|4) #P(Y |A)
Corpus Source Population Target Population
L
features features outcomes features biased
‘ X Y Y predict outfomes
embedding source source target
. . ’ T - target
@re—tralned Slde)j QModeI Side) ) \(Apphcatlon Side) o )

error disparity
The distribution of error (€) over at least two
different values of an attribute (A4) are unequal:

Qe J4) # Qe )

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In

ACL-2020: Proceedings of the Association for Computational Linguistics.




Predictive Bias Framework

[ | potential origin label bias outcome disparity
Biased annotations, The distribution of outcomes, given attribute 4,
|:| consequence interaction, or latent bias is dissimilar than the ideal distribution:
from past classifications. Q(Y |4) #P(Y|4)
(E mbeddi ng\ e ~ e ~
Corpus Source Population Target Population
[ . ®
features features outcomes features biased
Y predict »| outcomes
embedding source source target %
\(Pre-trained Side) ) \_(Model Side) ) \_ (Application Side) e )
error disparity
The distribution of error (€) over at least two
different values of an attribute (A4) are unequal:
Qe ) # Qe )

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In

ACL-2020: Proceedings of the Association for Computational Linguistics.




Predictive Bias Framework

[ | potential origin label bias outcome disparity
Biased annotations, The distribution of outcomes, given attribute 4,
|:| consequence interaction, or latent bias is dissimilar than the ideal distribution:
from past classifications. Q(Y |4) #P(Y|4)
(E mbeddi ng\ e ~ e ~
Corpus Source Population Target Population
[ J . ¢
features features outcomes features biased
Y predict »| outcomes
embedding source source target %
@re—trained Side)j QModeI Side b ) Plication Side) t:rg“ )

selection bias error disparity
The sample of observations The distribution of error (€) over at least two
themselves are not representative different values of an attribute (A4) are unequal:
of the application population. Qe |4) # Q(€t|Aj)

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In

ACL-2020: Proceedings of the Association for Computational Linguistics.




Predictive Bias Framework

|:| potential origin over-amplification label bias outcome disparity
The model discriminates on Biased annotations, The distribution of outcomes, given attribute 4,
D consequence a given human attribute interaction, or latent bias is dissimilar than the ideal distribution:
beyond its source base-rate. from past classifications. Q(Y,|4) #P(Y |A)
(E mbeddi ng\ e ~ e ~
Corpus Source Population Target Population
[ J . *
features features outcomes features biased
predict »| outcomes
embedding source source target %
@re—trained Side)j QModeI Side L j Blication Side) tz;rget )

selection bias error disparity
The sample of observations The distribution of error (€) over at least two
themselves are not representative different values of an attribute (A4) are unequal:
of the application population. Qe |4) # Q(€t|Aj)

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In

ACL-2020: Proceedings of the Association for Computational Linguistics.




Predictive Bias Framework

|:| potential origin

over-amplification label bias outcome disparity
The model discriminates on Biased annotations, The distribution of outcomes, given attribute 4,
D consequence a given human attribute interaction, or latent bias is dissimilar than the ideal distribution:
beyond its source base-rate. from past classifications. Q(Y)|4) # P(Y |4)
Corpus Source Population Target Population
[ J . ~
features features outcomes features biased
predict »| outcomes
embedding source source target %
' ) < ' 4 X tﬂ}"qﬁ’t
@re—tramed Slde)j QModeI Side j Plication Side) o )
semantic bias selection bias error disparity
Non-ideal associations between attributed The sample of observations The distribution of error (€) over at least two
lexeme (e.g. gendered pronouns) and themselves are not representative different values of an attribute (A4) are unequal:
non-attributed lexeme (e.g. occupation). of the application population.

Qe J4) # Qe )

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In

ACL-2020: Proceedings of the Association for Computational Linguistics.



Predictive Bias Framework

E.g. Coreference resolution:
connecting entities to references (i.e. pronouns).

“The doctor told Mary that she had run some blood tests.”

\l/ |

semantic bias selection bias error disparity
Non-ideal associations between attributed The sample of observations The distribution of error (€) over at least two
lexeme (e.g. gendered pronouns) and

themselves are not representative different values of an attribute (A4) are unequal:
non-attributed lexeme (e.g. occupation). of the application population. Qe |4) # Q(€t|Aj)

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In

ACL-2020: Proceedings of the Association for Computational Linguistics.



Ethics in Big Data

Tvpes of bias:

e Outcome Disparity: Predicted distribution given A,
are dissimilar from ideal distribution given A
o Selection bias
o Label bias
o Over-amplification

e Error Disparity: Predicts less accurate for authors of given demographics.

e Semantic Bias: Representations of meaning store demographic associations.
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Ethics in Big Data

Privacy

e Risk Categories:
o Revealing unintended private information
o Targeted persuasion

e Mitigation strategies:
o Informed consent -- let participants know
o Do not share / secure storage
o Federated learning -- separate and obfuscate to the point of preserving
privacy
o Transparency in information targeting

“You are being shown this ad because ...”



Ethics in Big Data

Human Subjects Research

Observational versus Interventional



Ethics in Big Data

Human Subjects Research

Observational versus Interventional

(The Belmount Report, 1979)

(i) Distinction of research from practice.

(i) Risk-Benefit criteria

(iii) Appropriate selection of human subjects for participation in research
(iv) Informed consent in various research settings.
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Machine Learning Cross Validation
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Useful Plots: For distributions

Histogram + KDE

Boxplot

Violin plot

(Lewinson, 2019)



https://towardsdatascience.com/violin-plots-explained-fb1d115e023d

Useful Plots: Correlation

Scatter Plot: for two variables expected to be associated (with optional regression line)
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Correlation Matrix: for comparing associations between many variables (use Bonferroni correction if hyp testing)

0.2
FriendSize Intelligence Quotient Income Sat W/ Life Depression ' ! ' j ‘
Openness
F1 0.03 0.04 0.12 0.02 -0.1 0.1
Conscientiousness
F2) 0.04 -0.26 -0.19 -0.09 0.11
Extraversion 0.0
F3| -0.07 -0.13 0.02 -0.02 -0.02
Agreablen
Fa -0.03 0.27 -0.08 -0.12 011 greableness -0.1
F5 -0.01 0.23 0.29 0.07 021 Neuroticism
\w‘ 7 §‘ 7 ‘Z" g, _02
Fig 3. Individual factor correlations with outcomes. Note how F4 which captures the use of swear words negatively correlates with o QQI N rd & N
Satisfaction with Life (SWL). 5’ I3 So °¢ G’U 0)5
IS g v o3
https://doi.org/10.1371/journal.pone.0201703.g003 O S s H
g . K (Liu et al., 2016)



http://wwbp.org/papers/persimages16icwsm.pdf

Useful Plots: Any Values

. Twitter and All Predictors
Bar Plot: To visually compare values o —

under different selections/conditions. Al Predictors (except Twitter) =8
Income and Education [ |
. . Smoking e
40 NlCCSt FTL{lt Diabetes (e
_';._35 Hypertension =
,-\8 30- Obesity ]
%25" = %Black =T
< 20
5 %Female s |
< 15 .
§ 10 %Married ——
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Line Plot: When one variable has a natural ordering (e.g. time) 08 ‘ -
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Fig 6. Test re-test validity of our learned factors.

(first 5% vaccinated) becomes majority https/doi.org/10.1374/journal.pone.0201703.9006
(plot source: NYT U.S. Coronavirus Data) ~Jan 15, 2021 ~July 1, 2021




Useful Plots: Prediction

Learning Curve: for plotting error from gradient descent.

A

for a model with
convex optimization
(i.e. linear regression)

cost

# iterations
ROC Plot: for visualizing true-positive to false-positive rates (used for AUC metric)

Some extension of Receiver operating characteristic to multi-class

1.0+
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o8f J_[i

(=)
o

True Positive Rate
2]

o
'S
1

— micro-average ROC curve (area = 0.73)
021 ~” | — ROC curve of class 0 (area = 0.91)
. — ROC curve of class 1 (area = 0.60)
— ROC curve of class 2 (area = 0.79)

0.0 0.2 0.4 0.6 0.8
False Positive Rate

| (PLOT_ROC)

for a model with
non-convex
optimization (i.e.
most deep learning)

True Positive Rate (prob. of detection)

1.0

0.8

0.6

0.4

0.2

0.8.

el

cost

Mini-batch#  (Dabura, 2017)

[ Facebook language /
prediction vs. medical records /ax threshold
3l
/
/
/

/ Chance performance

/ Screening surveys vs.
medical records
A1 (Noyes et al., 2011)

¥ Strict threshold

| ‘ __(Eichstaedt et al., 2018)

False Positive Rate (prob. of false alarm)


https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3
https://scikit-learn.org/0.15/auto_examples/plot_roc.html
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Supervised Learning

1 2 3 4 5 6
X7 X8 X9 X10 X11 X12
X13 X14 X15 Xm

Training and test set

Estimate y = f(x) on X)Y.
Hope thatthe same f(x)
also works on unseen X', Y’

J. Leskovec, A. Rajaraman, J. Uliman: Mining of Massive Datasets, http://www.mmds.org

Task: Determine a function, f(or parameters to a function) such that 1) =%



Common Goal: Generalize to new data

Does the
model hold up?

Original Data New Data?




Common Goal: Generalize to new data

Does the
model hold up?

Training Data

Testing Data




Training
Data

ML: GOAL

Does the
model hold up?

Develop-
ment
Data

Testing Data

Set training
hyperparameters




N-Fold Cross Validation

Goal: Decent estimate of model accuracy

All data “
lter 1 train test
lter 2 ‘ train ‘ “ test “ train \

lter 3 test test test test test

‘ ptest ‘ ptest ‘ ptest “ ptest ‘ ptest




observed
dep
variable

test | test ‘ test ‘ test ‘ test ‘

estimated
dep
variable

ptest ‘ ptest ‘ ptest ‘ ptest ‘ ptest ‘




REViEW: DiStribUtEd M L Done very often in practice. Not

talked about much because it's
1. Distribute copies of entire dataset - mostly as easy as it sounds.

a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute da.ta \d\m\ Preferred method for big data or
a. Eachnode flnd§ parameters.for subset of da very complex models (i.e.
- Neeﬂs nF@Ch Ismé:uulo sm remeer models with many internal
I @ al zear) !@SEQrver y
i. Distributed All-Reduce parameters).

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal
3. Distribute model or individual operations (e.g. matrix multiply)

Pro: PaiMlodel Parellelism:d  Con: High communication for transferring
Intermediar data.



0

batch_size-1

N-batch_size

N

——_ A A A A A A
=2
EEN]

update params of each
node and repeat

] - parameters

4
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From Linear Models to Neural Nets

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)



From Linear Models to Neural Nets

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

Inputs  Weights Net input Activation
function function

output




Common Activation Functions

1

Zz=wX i //~

/ o

-6 -4 -2 0 2 4 6

Logistic: o(z)=1/(1+ €%) | 7

Hyperbolic tangent: tanh(z) = 20(2z)- 1 = (¢**- 1) /(¢ + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)




From Linear Models to Neural Nets

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

Inputs  Weights Net input Activation
function function

output




From Linear Models to Neural Nets

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

Inputs  Weights Net input Activation
function function

output

Batch Normalization



Batch Normalization

Input: Values of 2 over a mini-batch: B = {x1._ 1 };
Parameters to be learned: v,
Output: {y; = BN, g(z:)}

»
UB — Z XTi // mini-batch mean
i=1
1 m
g - Z(:Ez — 1u5)? // mini-batch variance
el
T — B // normalize

Yi < vZ; + F = BN, g(z;) // scale and shift




Batch Normalization

/ (but within the current batch of
L\

This is just standardizing!

observations)

Input: Values of z over a mini-batch: B = {x1._,}; !

Parameters to be learned: v,
Output: {y; = BN, g(z:)}

»
UB — Z XTi // mini-batch mean
i=1
1 m
g - Z(azz — 1u5)? // mini-batch variance
el
T — B // normalize

0, 5y B = BN, gl // scale and shift




Batch Normalization

X y

batch_size-1

IREEEREERERER]

N-batch_size



Batch Normalization

A

This is just standardizing!
(but within the current batch of
observations)

Input: Values of z over a mini-batch: B = {x1._,}; !

Parameters to be learned: v,

Output: {y; = BN, g(z;)} Why?
. e Emopirically, it works!
UB 1 Z T; // mini-batch mean e Conceptually, generally good
™=l for weight optimization to

keep data within a reasonable

range (dividing by sigma) and

R By = s ; ) such that posi;clive weightz

Ly & —F—— hormalize move it up and negative down

AR (centering).

e Small effect: When done over
mini-batches, adds
regularization due to
differences between batches.

1 & . .
0123 — - ;(xz — /,L5)2 // mini-batch variance

Yi < vZ; + F = BN, g(z;) // scale and shift

(loffe and Szegedy, 2015)



Feed-Forward
Network

input layer
hidden layer 1 hidden layer 2

output



Recurrent Neural Network

( Y4 )< )’(t) :f(h(t)VV)

Activation Function

[ e " h —
hidden layer” —s ( t ){ h,=gh,, U+x V)

C % )

Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the
previous timestep.



Backward Propagation
through Time

@)

h(1 = tf.tanh(tf.matmul(U,h

(14J)+ tf.matmul(w,x(n))

Yy = tf.softmax(tf.matmul(V, h(n))

cost = tf.reduce_mean(-tf.reduce sum(y*tf.log(y pred))

|
|
|
|
|
|
|
|
|
|
|
|
|
1 h
|
:For i in range(1, len(x)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



Backward Propagation
through Time /

N

i To find the gradient for the overall graph, we
| use back propogation, which essentially

"Ny = chains together the gradients for each node
' for i in range(1, len(x)): (function) in the graph.

h(n = tf.tanh(tf.matmul(U,

With many recursions, the gradients can
Yy = tf.softmax(tf.matmul“vanish or explode (become too large or

“oe small for floating point operations).
cost = tf.reduce_mean(—tf.redé\\\ ,///




RNN: Optimization

14
)
Backward Propagation [

through Time

Wb [S1Wb ST Wb <

(Geron, 2017)



How to Addressing Vanishing Gradient?

Dominant approach: Use Long Short Term Memory Networks (LSTM)

y Yoo Ymy Yo
igh C h;»&}-
y (0) (1)
F I B
X X 0) X1) X2)
& Time
RNN model “unrolled” depiction

(Geron, 2017)



RNN: The GRU

Gated Recurrent Unit

Yy
i s A
t1) —» ® > » h
i — Element-wise !
i~ multiplication !
| @ Addition
| mmm logistic |
 W— tanh
GRU cell J

X) (Geron, 2017)



RNN: The GRU

Gated Recurrent Unit

relevance gate update gate

Yo

\ A

1 ~

h(t-1)_, \ . hm

i ® Element-wise i
i ~ multiplication |
} @ Addition
i_ logistic !
| m—tanh

. GRU cell

o (Geron, 2017)



RNN: The GRU

Gated Recurrent Unit

relevance gate

(t-1) —p

update gate

Yo

-

A candidate for updating h,

¢ / sometimes called: h~

i — Element-wise !
multiplication

i @ Addition

i_ logistic !

____________________

GRU cell J

(Geron, 2017)



RNN: The GRU

T T
Zy = o(W,, X+ W, -h )+ b,)
T i
I‘(t) = O'(er . X(l‘) + Whr : h(l‘—l) + br)
_ T T
Gated Recurrent Unit 81 = tanh (Wxg X T Whg '(r(t) ® h(t—l)) 5 bg)
h, =z,®h, )+ -2,)®g;,
Yo
A
N 2
(1) —p ® z > hy
Elementwise
multiplication
@ Addition
i mEm logistic
| —onh |
GRU cell /

The cake, which contained candles, was eaten.



What about the gradient?

The gates (i.e. multiplications
J— T. T.
zy =0(We' X+ Wy, "h_py+b,) based on a logistic) often end up
r, =o(W, -x,+W, -h,,,+b,) keeping the hidden state exactly
_ T T (or nearly exactly) as it was. Thus,
8y = tanh (W' X+ Wy, - (ry ®hy_y) +by) for most dimensions of h,
0 =2p®he+ (1 -2y ®8,

y ~
\ Ny ™ Ny

( )

X

(t-1) —p

)

XD

GRU cell /

The cake, which contained candles, was eaten.



What about the gradient?

Z)
0

8(1)

G(Wx o X(t) + WhZT * h(t—l) + bZ)

. .

T T
== G(er ° X(t) + Whr ° h(t—l) + br)

T T
= tanh (Wxg * X(t) + Whg * (l'(t) ® h(t—l)) + bg)
=2, ®h,_)+ (1 -27,)®¢g;
Yo
A
( )
() —p ®

XD

GRU cell /

> h,

The gates (i.e. multiplications
based on a logistic) often end up
keeping the hidden state exactly
(or nearly exactly) as it was. Thus,
for most dimensions of h,

Ny ™ ey
This tends to keep the gradient
from vanishing since the same
values will be present through
multiple times in backpropagation
through time. (The same idea
applies to LSTMs but is easier to
see here).

The cake, which contained candles, was eaten.



The GRU (LSTM): Zoomed out

Take-Aways

® Simple RNNs are powerful madels but they are difficult to train:

and Yo where h(t) is @ combination of h,, .. and X

o Just two functions h(t) )
o Exploding and vanishing gradients make training difficult to converge.

® L|STM (e.g. GRU cells) solve
o Hidden states pass from one time-step to the next, allow!for long-distance

)

dependencies.
o Gates-are usedto keep hidden states from changing rapidly (and thus keeps

gradients under control).
o To train: mini-batch stochastic gradient descent over cross-entropy cost



Post-Exam?2 Topics:

Research Ethics

Useful Plots

Machine Learning Cross Validation
Recurrent Neural Networks
Convolutional Neural Networks
Transformer Networks

CCT S



Convolutional Neural Networks

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

(wikipedia)



Convolution Layer

Feature maps

Convolutions

“Convolution”

3k 11012 k8 |4

1 10 |7 1342 |6
213 [511°h |3 udi® o8
— * 1/0 [-1

1(4 |12 (6|5
1(0 -1

12 1183 |7 |2
Filter 3x3

912 1612|511

Original image 6x6

(Barter, 2018)

Subsampling

Convolutions

______ -
*.. Output
\“

Subsampling Fully connected



Feature maps

Convolution Layer

Convolutions Subsampling Convolutions

“Convolution”

3k 11012 k8 |4
1. 30 |2 k342 |6
21351t |3 B e j
-— * 1[0 |-1
1(4 |12 (6|5
1(0 -1
12 1183 |7 |2
Filter 3x3
912 |6 |25 |1 Output 4x4

Original image 6x6

Result of the element-wise
product and sum of the
filter matrix and the orginal

(Barter, 2018) i

Subsampling Fully connected



Feature maps

Convolution Layer

Convolutions Subsampling Convolutions Subsampling Fully connected

“Convolution”

381 |12 48 |4
1. 30 |7 342 |6 -7
213 |51t |3 udi® o8
e #® 1l 110 =1 —
1141|1126 1|5
1(0 -1
312 1% 1307 |2
Filter 3x3
912 |6 |25 |1 Output 4x4

Original image 6x6

Result of the element-wise
Breakthrough in image product and sum of the

classification: Let the filter mat”;‘r:::ethe orginal
model automatically

Qearn the filter weights!




Subsampling (Pooling)

(wikipedia) Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

Subsampling -- reducing total grid size (i.e. reducing parameters for next layer)

2x2 pooling




Subsampling (Pooling)

(wikipedia) Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

Subsampling -- reducing total grid size (i.e. reducing parameters for next layer)

2x2 pooling
3 N Types of pooling

1 —6—3 7 ¢ max
e avg

»




Subsampling (Pooling)

(wikipedia) Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

Subsampling -- reducing total grid size (i.e. reducing parameters for next layer)

2x2 pooling _
3 \4\'\3 Types of pooling
| Je—ts—1 > e max

e avg




Standard Training Loss Function

RNN_cost = tf.reduce_mean(-tf.reduce sum(y*tf.log(y _pred))

Logistic Regression Likelihood: L(B, 1, ---, Bx| X, Y ) = Hp(xi)yi(l — p(z;)) ¥
=1

. . y l : Ea A ” ”
Final Cost Function: J!'! = - § E y, log y". -~ "cross entropy error
S0 = |



Standard Training Loss Function

RNN_cost = tf.reduce_mean(-tf.reduce sum(y*tf.log(y _pred))

Logistic Regression Likelihood: L(B, 1, ---, Bx| X, Y ) = Hp(xi)yi(l — p(x;))
=1

Log Likelihood: (B) =Y yilog pla;)+(1—y;)log (1—p(;))
| i=1
Log Loss: J(8) =+ > wilog pla;) + (1= y)log (1 — p)(x,)
A =1 /
. N |V
Cross-Entropy Cost: J = —% > wilog plx;;)  (a‘multiclass” log loss)
i=1 j=l1

. NV
. . y 1 : X A ” "
Final Cost Function: J'Y' = ¥ E E ,e/.,"‘);l.:;g ;_;fi,; -- "cross entropy error
Yo =1 |



Inputs  Weights Net input Activation
function function

D
Feed Forward Network
(full-connected)

input layer

hidden layer 1 hidden layer 2



Review

311 (1]2 {8 |4
140 (7|3 )2 |6
213 (5 ]1l1 |3 b
14 (1265
3|2 |z]|a|z |2
9 (2|6 2|51

Original image 6x6

(Barter, 2018)

Convolutional NN

Feature maps

Result of the element-wise
product and sum of the
filter matrix and the orginal
image

Convolutions Subsampling
“Convolution”

-7
1(0 -1 "
i |0 |=1 =
10 -1
Filter 3x3

Output 4x4

Convolutions

Subsampling Fully connected
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Recurrent Neural Network

C Yt )< y(t) :f(h(t)VV)

Activation Function

111 H b h .
hidden layer” —= C t ){ b(t)_g(h(t_l)U+x(t)V)

C % )

Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the
previous timestep.



FFN CNN RNN

C % )

Can model computation (e.9. matrix operations for a cingle input) be parallelized?




FFN CNN RNN

C % )

Can model computation (e.9. matrix operations for a cingle input) be parallelized?




FFN CNN RNN

Can model computation (e.9. matrix operations for a cingle input) be parallelized?

X




FFN CNN RNN

C Yt )
4 I
Ultimately limitse how complex the model can
be (i.e. it’e total number of
,bammekr/ we:’g/ntr) a8 cam,barea’ to a CVN.
""" C_ X%

') be parallelized?

Can model computation (e.9. matrix operations for o cin




The Transformer: Attention-only Models

Can handle sequences and long-distance dependencies,
but....

e Don’t want complexity of LSTM/GRU cells
e Constant num edges between input steps
e Enables “interactions” (i.e. adaptations) between words

e Easy to parallelize -- don’t need sequential processing.



The Transformer: Attention-only Models

Challenge: The ball was kicked by kayla.

e |ong distance dependency when translating:
Vo) Yo Ve o, e

r 1 1
A

1
—> A — A — — A — A
t t

A A A
$ é) é t t t
(X <40~ V) Ja) Xe2)

Kayla kicked the ball.




The Transformer: Attention-only Models

Challenge: The ball was kicked by kayla.

e |ong distance dependency when translating:

Y (o) Y1) Y(2) Y(3)

1

(4)

Kayla kicked the ball.



bi

ahi->S Q ahi->S Q
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hi->s <L hiSs .
o/ valud 4

[ ] [T Score function:
% %y [z3 ] [z4 ] .~ ) Trrr
;Ir':"}'INUH(.h'IF? '5) = s W h’i

(v —s = softmax(v(h;, s))
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o s = softmax (v (h;, s))
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E
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n=1



The Transformer: Attention-only Models

Challenge:
e |ong distance dependency when translating:
Attention came about for encoder decoder models.

Then self-attention was introduced:



--"
. "
- . .
. . .
-----
PR

' query
'kéys

Score function:
.zr""}'n?."(l“(h“ia '-) = 5 ]‘ }2..;
Qp.—s = 5(_)ft111d\( (h“ s))

| »\
E

(__fh" = E X}, 35, Zn

n=1



( Score function:
z z z. |z
1 2 P z f 4 ' ~ _T T
— z —— ——¢ — il f(} L, '-') = s W/ 131
( N 4 V ( N
5 5 i 54 o s = softmax (v (h;, s))
\ J G J \ J

| »\
5]

Ch, = E p,—5,<n

n=1



Attention as weighting a value
based on a query and key:

|%| Output

activation —>i : &

[] Query —>|£| Ve

Key Value

(Eisenstein, 2018)



The Transformer: Attention-only Models

- = A &7 | F

Attention as weighting a value
based on a query and key:

|%| Output

activation —>i : &

[] Query —>|£| Ve
Value

Key

(Eisenstein, 2018)



The Transformer: Attention-only Models

CSE 545 Supplemental Lecture
Will begin at 2:00pm

|%| Output

activation —: : «

D Query —)ﬁ wa l
Value

Key

(Eisenstein, 2018)



The Transformer: Attention-only Models

Output
oL
|%| Output
Y activation i o
03 Query ——( .
b
Key Value

(Eisenstein, 2018)



The Transformer: Attention-only Models

[ B~ 4 B | A4 | IIJ 101 1IN WIS

Output

|%| Output

activation —: : «

D Query —)& wa l
bl' Value

Key

—

—> > b,
l_

-1 1

(Eisenstein, 2018)



The Transformer: Attention-only Models

| l.l“‘vlwlw] | “llhll-’-ll WA W’ WA W I
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The Transformer: Attention-only Models

e ey ¢ <At A
\ FFN
T

Output







The Transformer: “Attention-only” models

-y -1 »y Z -y i+1 »y +2




The Transformer: “Attention-only” models

»y i-1 »y Z »y i+1 »y i+2
Output
o
Attend to all hidden states
, in your “neighborhood”.




The Transformer: “Attention-only” models

-y -1 »y i »y i+1 »y i+2
Output Yap(hi, 8) = 5" hi
k'q
oL
(4




The Transformer: “Attention-only” models

Vi1 Y, Vil Vs scaling
parameter
Output Vap (kq) = (Kq)o
oL
("%
b
IIOZ.—I hi i+1
! T T T
w w

i-1 ; w.,., w.,



The Transformer: “Attention-only” models

»y -1 »y Z -y i+1 »y +2

&D@mduct

b “f/

?rbdp (k)q) — (ktq g

Linear layer:
WTX

One set of weights for
each of for K, Q, and V




The Transformer

Limitation (thus far): Can’t capture multiple types of dependencies between words.

| kicked the ball

Who Did what? To whom?

. .

| kicked the ball



The Transformer

Solution: Multi-head attention

| kicked the ball

L o
@ OO0 @ OO0

Who To whom?

Did what?

| kicked the ball



Multi-head Attention

----------------------------------

: Scaled Dot-Product
Attention




Transformer for
Encoder-Decoder

Stage 1 Positiona
Encoding

__________________________
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Transformer (as of 2017)

‘“WMT-2014" Data Set. BLEU scores:

EN-DE EN-FR
CI\\V/ I N(elgle) 24.6 39.9
ConvSeg2Seq 25.2 40.5
Transformer® 28.4 41.8




Qutput
Probabilities

Transformer

e Utilize Self-Attention

e Simple att scoring function (dot product, scaled)
e Added linear layers forQ,K,andV = e

e Multi-head attention

e Added positional encoding i ===

e Added residual connection

e Simulate decoding by masking

Positional »‘
- R
https://4.bp.blogspot.com/-OlrV-PAtEKQ/W3RkOJCBkal/AAAAAAAADOQ/g 0

GAs/s640/image1.qif

Inputs Qutputs
(shifted right)


https://4.bp.blogspot.com/-OlrV-PAtEkQ/W3RkOJCBkaI/AAAAAAAADOg/gNZXo_eK3tMNOmIfsuvPzrRfNb3qFQwJwCLcBGAs/s640/image1.gif
https://4.bp.blogspot.com/-OlrV-PAtEkQ/W3RkOJCBkaI/AAAAAAAADOg/gNZXo_eK3tMNOmIfsuvPzrRfNb3qFQwJwCLcBGAs/s640/image1.gif

Transformer

Why?
e Don’'t need complexity of LSTM/GRU cells

e Constant num edges between words (or input

steps)

e Enables “interactions” (i.e. adaptations)
between words

e Easy to parallelize -- don’t need sequential
processing.

Drawbacks:
e Only unidirectional by default
e Only a “single-hop” relationship per layer
(multiple layers to capture multiple)

Positiona
Encoding

Qutput
Probabilities

Positional
Encoding

Inputs Qutputs
(shifted right)



BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings
(or pre-trained contextualized encoder)

Drawbacks of Vanilla Transformers:
e Only unidirectional by default
e Only a “single-hop” relationship per layer
(multiple layers to capture multiple)



BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings
(or pre-trained contextualized encoder)

e Bidirectional context by “masking” in the middle
e Alot of layers, hidden states, attention heads.

Drawbacks of Vanilla Transformers:
e Only unidirectional by default
e Only a “single-hop” relationship per layer
(multiple layers to capture multiple)



BERT

Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

Input

tokenize into “word pieces”

Sentence A = The man went
Sentence B = Penguins are

Label = NotNextSentence

[MASK]

/

[MASK]
5

(Iikes

Token
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Embedding
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9

(Devlin et al., 2019)




Bert: Attention by Layers

https://colab.research.gooale.com/drive/1viOJ11hdujVifH857hvYKIdKPTD9Kid8

Layer: 2 § Attention: All
H "l 8 B
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i
went

to
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store

[SEP]
at
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i ‘ i
bought ﬂ bought
fresh fresh
straw ; straw
#i#berries #i#tberries

[SEP] [SEP]

(Vig, 2019)


https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8

BERT Performance: e.g. Question Answering

GLUE scores evolution over 2018-2019

B Single generic models == == 2018 Task-specific-SOTA == Human performance
90 f
85
80
75
70

BILSTM+ELMo GPT BERT BERT Big BigBird

https://rajpurkar.qithub.io/SQuAD-explorer/



https://rajpurkar.github.io/SQuAD-explorer/

BERT: Pre-training; Fine-tuning

[ W’y ") ‘ w3 wW’s
Embedding 7y % Y
to vocab + T
softmax
[ Classification Layer: Fully-connected layer + GELU + Norm
r 3 A r 3 r 3 3
01 02 03 04 05
3 A ' r A
(
Transformer encoder
12 or 24 layers
N
Embedding T T T t T
| w w2 W3 [MASK] Ws
W1 W2 W3 W4 Ws




BERT: Pre-training; Fine-tuning

Transformer encoder

12 or 24 layers

w1 w2 W3 [MASK] W5
[ | | [ |
W1 W2 W3 W4 Ws




BERT: Pre-training; Fine-tuning

Embeddin Novel classifier

to vocab

Softmax (e.g. sentiment classifier; stance detector...etc..)

[ )
Transformer encoder
12 or 24 layers
2 _J
Embedding T T T T T
[ W1 W2 ] W3 [MASK] ] Ws

W1 W2 W3 W4 Ws



Neural Network Summary

e (Goal is accurate prediction of y (outcome) given features (x)
e Use L1 or L2 penalization (as a regularization) to avoid overfit
e Reason for Train, Dev, Test split

e Components of a neural network

e Batch Normalization

e Distribution options: why is data parallelism preferred?

e Recurrent Neural Network

e Convolution Operation with Filters



Feature Selection / Subset Selection

(bad) solution to overfit problem

Use less features based on Forward Stepwise Selection:

e start with current_model just has the intercept (mean)
remaining_predictors = all_predictors
for 1 in range(k):
#find best p to add to current model:
for p in remaining prepdictors
refit current model with p
#add best p, based on RSSp to current_model
#remove p from remaining predictors



Regularization (Shrinkage)

10 10
as} o8]
§ 0 g 06
02} 02
%0 02 04 06 08 10 Y 52 02 06 08 10
original weight original weight
No selection (weight=beta) forward stepwise

Why just keep or discard features?



Regularization (L2, Ridge Regression)

Ordinary least squares objective:
N

m

3’ = (n‘grnin.g{Z(y,' — Z I;‘,“BJ)Q}

i=1 5=1

Ridge regression:

10

ldea: Impose a penalty on size of weights:

08

06}

new weight
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original weight



Regularization (L2, Ridge Regression)

10

ldea: Impose a penalty on size of weights:

Ordinary least squares objective: g 05
N m z
8= (17‘_(]771:2771.45{2(3,/; - Z IJJ‘BJ)Q} 2 04}
i=1 j=1 0
Ridge regression: 00
N m 1
_311(111 = argmain f{Z(y, — Z Ii,}ﬁj)) + A Z _3;}
i=1 j=1 =1

0.2 04 0.6 0.8 10
original weight

AIBIL



Regularization (L2, Ridge Regression)

10
|ldea: Impose a penalty on size of weights: o
Ordinary least squares objective: g o
N m =
8= (n‘grnin.g{Z(y,' - Z ;i 3;)°} & 04y
i=1 j=1 o
Ridge regression: % oz s o6 o8 1o
N m m original weight
gridge — a'rgm-z'.n.,g{z(y; - Z ;1#,-_,-@-)2 + A Z 3J2}
- j=1 j:l \
| RSS(\) = (y — X8) (y — X38)+ \3T 3 NIEDE:
In Matrix Form: o | : H112

B‘r-i(lge _ (XTX + /\[)—1XTy

I: m x m identity matrix




Regularization (L1, The “Lasso”)

10
Idea: Impose a penalty and zero-out y
some weights
£ 06}
The Lasso Objective: S 04
1 N m m 02
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Regularization (L1, The “Lasso”)

10
Idea: Impose a penalty and zero-out y
some weights
£ 06
The Lasso Objective: : o
1 N 1 m 02r
3150 — qrgming{= Y; — ;8 +AY 18]
{2 ;( ng e )=Zl il %0 02 04 06 038 10

original weight

No closed form matrix solution, but \

often solved with coordinate descent.

AllBIh

Application: p=n or p>>n (p: features; n: observations)



Cluster Distribution Model Parallelism

Multiple devices on multiple machines
iwith tf.device(“/cpu:1”) iwith tf.device(“/gpu:0”)
! beta=tf.Variable(...) ! y _pred=tf.matmul (beta,X)

o~ Transfer Tensors

Machine B 4

Machine A




