
Large-Scale, Distributed
Machine Learning

CSE545 - Spring 2022
Stony Brook University

H. Andrew Schwartz

X
1
 X

2
 X

3
 Y

(genes) (health)

Supervised Learning

X
1
 X

2
 X

3
 Y

Supervised Learning

X
1
 X

2
 X

3
 Y

X
1
 X

2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y

 X
13

 X
14

 X
15

... X
m

Supervised Learning

X
1
 X

2
 X

3
 Y

X
1
 X

2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y

 X
13

 X
14

 X
15

... X
m

Task: Determine a function, f (or parameters to a function) such that f(X) = Y

Supervised Learning

session
 defines the environment in
 which operations run.
 (like a Spark context)

devices
 the specific devices (cpus or
 gpus) on which to run the
 session.

tensors*
 variables - persistent
 mutable tensors
 constants - constant
 placeholders - from data

operations
 an abstract computation
 (e.g. matrix multiply, add)
 executed by device kernels

graph
* technically, still operations

Spark Overview Ingredients of a TensorFlow

TensorFlow has built-in ability to derive gradients given a cost function.

 tf.gradients(cost, [params])
(rasbt, http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/)

Spark Overview Review: Gradient Descent

=|ε|

Linear Regression: Trying to find “betas” that minimize:

Spark Overview Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

Thus:

matrix multiply

Spark Overview Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

Thus:

In standard linear equation:

(if we add a column of 1s, mx + b is just matmul(m, x))

matrix multiply

Spark Overview Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

Thus:

matrix multiply

Spark Overview Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

Thus:

How to update?

Spark Overview Weights Derived from Gradients

Linear Regression: Trying to find “betas” that minimize:

Thus:

How to update?

(for gradient descent) “learning rate”

Spark Overview Weights Derived from Gradients

Ridge Regression (L2 Penalized linear regression,)

1. Matrix Solution:

Spark Overview Weights Derived from Gradients

Ridge Regression (L2 Penalized linear regression,)

1. Matrix Solution:

2. Gradient descent solution
(Mirrors many parameter optimization problems.)

Spark Overview Weights Derived from Gradients

Ridge Regression (L2 Penalized linear regression,)

Gradient descent needs to solve.
(Mirrors many parameter optimization problems.)

TensorFlow has built-in ability to derive gradients given a cost function.

Spark Overview Weights Derived from Gradients

Ridge Regression (L2 Penalized linear regression,)

Gradient descent needs to solve.
(Mirrors many parameter optimization problems.)

TensorFlow has built-in ability to derive gradients given a cost function.

 tf.gradients(cost, [params])

Spark Overview Weights Derived from Gradients

TensorFlow has built-in ability to derive gradients given a cost function.

 tf.gradients(cost, [params])

Spark Overview Weights Derived from Gradients

Options for Distributing ML
1. Distribute copies of entire dataset

a. Train over all with different hyperparameters
b. Train different folds per worker node.

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Spark Overview Options for distribution

1. Distribute copies of entire dataset
a. Train over all with different hyperparameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Options for Distributing MLSpark Overview Options for distribution

1. Distribute copies of entire dataset
a. Train over all with different hyperparameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Options for Distributing MLSpark Overview Options for distribution

1. Distribute copies of entire dataset
a. Train over all with different hyperparameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Options for Distributing MLSpark Overview Options for distribution

1. Distribute copies of entire dataset
a. Train over all with different hyperparameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Options for Distributing MLSpark Overview Options for distribution Done often in practice. Not
talked about much because it’s
mostly as easy as it sounds.

Options for Distributing MLSpark Overview Options for distribution
1. Distribute copies of entire dataset

a. Train over all with different hyperparameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Done often in practice. Not
talked about much because it’s
mostly as easy as it sounds.

Preferred method for big data or
very complex models (i.e.
models with many internal
parameters).

Options for Distributing MLSpark Overview Options for distribution
1. Distribute copies of entire dataset

a. Train over all with different hyperparameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Done often in practice. Not
talked about much because it’s
mostly as easy as it sounds.

Preferred method for big data or
very complex models (i.e.
models with many internal
parameters).

Data Parellelism

Model Parellelism

 Model Parallelism

Multiple devices on multiple machines

Machine A
CPU:0 CPU:1

Machine B
GPU:0

with tf.device(“/cpu:1”)
 beta=tf.Variable(...)

with tf.device(“/gpu:0”)
 y_pred=tf.matmul(beta,X)

Transfer Tensors

 Data Parallelism
...
 beta=tf.Variable(...)
 pred=tf.matmul(beta,X)

CPU:0 CPU:1 GPU:0

...
 beta=tf.Variable(...)
 pred=tf.matmul(beta,X)

...
 beta=tf.Variable(...)
 pred=tf.matmul(beta,X)

...
 beta=tf.Variable(...)
 pred=tf.matmul(beta,X)

worker:0 worker:1 worker:2

...
 beta=tf.Variable(...)
 pred=tf.matmul(beta,X)

...
 beta=tf.Variable(...)
 pred=tf.matmul(beta,X)

 Data Parallelism

X y
0

N

 Distributing Data

X y
0

batch_size-1

N-batch_size

N

 Distributing Data

 Distributing Data
X y

0

batch_size-1

N-batch_size

N

𝛳batch0

learn parameters (i.e. weights),
given graph with cost function
and optimizer

𝛳batch1

𝛳batch2

𝛳...

X y
0

batch_size-1

N-batch_size

N

𝛳batch0

𝛳batch1

Combine
parameters

 Distributing Data

 Distributing Data
X y

0

batch_size-1

N-batch_size

N

𝛳batch0

𝛳batch1

Combine
parameters

update params of each node and repeat

(Geron, 2017)

 Gradient Descent for Linear Regression

Batch Gradient Descent

Stochastic Gradient Descent: One example at a time

Mini-batch Gradient Descent: k examples at a time.

(Geron, 2017)

 Gradient Descent for Linear Regression

Batch Gradient Descent

Stochastic Gradient Descent: One example at a time

Mini-batch Gradient Descent: k examples at a time.

(Geron, 2017)

 Gradient Descent for Linear Regression

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow:
A System for Large-Scale Machine Learning. In OSDI (Vol. 16, pp. 265-283).

Spark Overview Distributed TensorFlow

Distributed:

● Locally: Across processors (cpus, gpus, tpus)
● Across a Cluster: Multiple machine with multiple processors

 Distributed TensorFlow

Distributed:

● Locally: Across processors (cpus, gpus, tpus)
● Across a Cluster: Multiple machine with multiple processors

Parallelisms:

● Data Parallelism: All nodes doing same thing on different subsets of data
● Graph/Model Parallelism: Different portions of model on different devices

 Distributed TensorFlow

Distributed:

● Locally: Across processors (cpus, gpus, tpus)
● Across a Cluster: Multiple machine with multiple processors

Parallelisms:

● Data Parallelism: All nodes doing same thing on different subsets of data
● Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

● Asynchronous Parameter Server
● Synchronous AllReduce (doesn’t work with Model Parallelism)

 Distributed TensorFlow

Distributed:

● Locally: Across processors (cpus, gpus, tpus)
● Across a Cluster: Multiple machine with multiple processors

Parallelisms:

● Data Parallelism: All nodes doing same thing on different subsets of data
● Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

● Asynchronous Parameter Server
● Synchronous AllReduce (doesn’t work with Model Parallelism)

 Distributed TensorFlow

discussed
previously

next slides

Multiple devices on single machine

CPU:0 CPU:1 GPU:0

Program 1 Program 2

 Local Distribution

Multiple devices on single machine

CPU:0 CPU:1 GPU:0

with tf.device(“/cpu:1”)
 beta=tf.Variable(...)

with tf.device(“/gpu:0”)
 y_pred=tf.matmul(beta,X)

 Local Distribution

Multiple devices on multiple machines

Machine A
CPU:0 CPU:1

Machine B
GPU:0

with tf.device(“/cpu:1”)
 beta=tf.Variable(...)

with tf.device(“/gpu:0”)
 y_pred=tf.matmul(beta,X)

 Cluster Distribution

Distributed:

● Locally: Across processors (cpus, gpus, tpus)
● Across a Cluster: Multiple machine with multiple processors

Parallelisms:

● Data Parallelism: All nodes doing same thing on different subsets of data
● Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

● Asynchronous Parameter Server
● Synchronous AllReduce (doesn’t work with Model Parallelism)

 Distributed TensorFlow

Distributed:

● Locally: Across processors (cpus, gpus, tpus)
● Across a Cluster: Multiple machine with multiple processors

Parallelisms:

● Data Parallelism: All nodes doing same thing on different subsets of data
● Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

● Asynchronous Parameter Server
● Synchronous AllReduce (doesn’t work with Model Parallelism)

 Distributed TensorFlow

Multiple devices on multiple machines

Machine A
CPU:0 CPU:1

Machine B
GPU:0

with tf.device(“/cpu:1”)
 beta=tf.Variable(...)

with tf.device(“/gpu:0”)
 y_pred=tf.matmul(beta,X)

Transfer Tensors

 Parallelisms
Model Parallelism

...
 beta=tf.Variable(...)
 pred=tf.matmul(beta,X)

CPU:0 CPU:1 GPU:0

...
 beta=tf.Variable(...)
 pred=tf.matmul(beta,X)

...
 beta=tf.Variable(...)
 pred=tf.matmul(beta,X)

 Parallelisms Data Parallelism

Distributed:

● Locally: Across processors (cpus, gpus, tpus)
● Across a Cluster: Multiple machine with multiple processors

Parallelisms:

● Data Parallelism: All nodes doing same thing on different subsets of data
● Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

● Asynchronous Parameter Server
● Synchronous AllReduce (doesn’t work with Model Parallelism)

 Distributed TensorFlow

Distributed:

● Locally: Across processors (cpus, gpus, tpus)
● Across a Cluster: Multiple machine with multiple processors

Parallelisms:

● Data Parallelism: All nodes doing same thing on different subsets of data
● Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

● Asynchronous Parameter Server
● Synchronous AllReduce (doesn’t work with Model Parallelism)

 Distributed TensorFlow

CPU:0 CPU:1 GPU:0CPU:0

Machine A Machine B(Geron, 2017: HOML: p.324)

TF Server TF Server TF Server

 “ps” “worker”
 task 0 task 0 task 1

Master

Worker

Master

Worker

Master

Worker

 Asynchronous Parameter Server

CPU:0 CPU:1 GPU:0CPU:0

Machine A Machine B(Geron, 2017: HOML: p.324)

TF Server TF Server TF Server

 “ps” “worker”
 task 0 task 0 task 1

Master

Worker

Master

Worker

Master

Worker

Parameter Server: Job is just to maintain
values of variables being optimized.

Workers: do all the numerical “work” and
send updates to the parameter server.

 Asynchronous Parameter Server

CPU:0 CPU:1 GPU:0CPU:0

Machine A Machine B(Geron, 2017: HOML: p.324)

TF Server TF Server TF Server

 “Worker” Worker Worker Worker

Master

Worker

Master

Worker

Master

Worker

Workers do computation, send parameter
updates to other workers, and store parameter
updates from other workers. Requires low
latency communication.

 Synchronous All Reduce

 “Worker” Worker Worker Worker

CPU:0 CPU:1 GPU:0CPU:0

Machine A Machine B(Dowling, 2017: Distributed TensorFlow)

TF Server TF Server TF Server

Master

Worker

Master

Worker

Master

Worker

Workers do computation, send parameter
updates to other workers, and store parameter
updates from other workers. Requires low
latency communication.

 Synchronous All Reduce

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow:
A System for Large-Scale Machine Learning. In OSDI (Vol. 16, pp. 265-283).

 Distributed TF: Full Pipeline

1. Distribute copies of entire dataset
a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Done very often in practice. Not
talked about much because it’s
mostly as easy as it sounds.

Preferred method for big data or
very complex models (i.e.
models with many internal
parameters).

Data Parellelism

Model Parellelism

Review: Distributed ML

Post-Exam2 Topics:

1. Research Ethics
2. Useful Plots
3. Machine Learning Cross Validation
4. Convolutional Neural Networks
5. Recurrent Neural Networks
6. Transformer Networks

Post-Exam2 Topics:

1. Research Ethics
2. Useful Plots
3. Machine Learning Cross Validation
4. Convolutional Neural Networks
5. Recurrent Neural Networks
6. Transformer Networks

Bias

Privacy

Ethical Research Practice

Ethics in Big Data

Types of bias:

● Outcome Disparity: Predicted distribution given A,
 are dissimilar from ideal distribution given A

○ Selection bias
○ Label bias
○ Over-amplification

● Error Disparity: Predicts less accurate for authors of given demographics.

● Semantic Bias: Representations of meaning store demographic associations.

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In
ACL-2020: Proceedings of the Association for Computational Linguistics.

Ethics in Big Data

Two Examples

distance from “standard” WSJ author demographics

model
accuracy

Two Examples

distance from “standard” WSJ author demographics

model
accuracy

Two Examples

Two Examples

distance from “standard” WSJ author demographics

Zhao, Jieyu, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and
Kai-Wei Chang. "Men Also Like Shopping: Reducing Gender Bias
Amplification using Corpus-level Constraints." In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language
Processing. 2017.

model
accuracy

Two Examples

Two Examples

distance from “standard” WSJ author demographics

model
accuracy

“Outcome Disparity”

“Error Disparity”

Zhao, Jieyu, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and
Kai-Wei Chang. "Men Also Like Shopping: Reducing Gender Bias
Amplification using Corpus-level Constraints." In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language
Processing. 2017.

Two Examples

“Outcome Disparity”

Our data and models are (human) biased.

“Error Disparity”

Person-level

attribute = 1

attribute = 2

Person-level

attribute = 1

attribute = 2

“Outcome Disparity”

Our data and models are (human) biased.

“Error Disparity”

“Outcome Disparity”

Our data and models are (human) biased.

“Error Disparity”

Person-level

attribute = 1

attribute = 2

Predictive Bias Framework

features
Xtarget

predict

Target Population

(Application Side)

biased
outcomes

Ŷtarget

outcome disparity
The distribution of outcomes, given attribute A,
is dissimilar than the ideal distribution:

Q(Ŷt|A) ≁ P(Yt|A)

error disparity
The distribution of error (ϵ) over at least two
different values of an attribute (A) are unequal:

Q(ϵt|Ai) ≁ Q(ϵt|Aj)

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In
ACL-2020: Proceedings of the Association for Computational Linguistics.

features
Xsource

features
Xtarget

predict

Source Population

(Model Side)

Target Population

(Application Side)

biased
outcomes

Ŷtarget

fit
features
𝜃embedding

outcome disparity
The distribution of outcomes, given attribute A,
is dissimilar than the ideal distribution:

Q(Ŷt|A) ≁ P(Yt|A)

error disparity
The distribution of error (ϵ) over at least two
different values of an attribute (A) are unequal:

Q(ϵt|Ai) ≁ Q(ϵt|Aj)

Embedding
Corpus

(Pre-trained Side)

outcomes
Ysource

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In
ACL-2020: Proceedings of the Association for Computational Linguistics.

Predictive Bias Framework

features
Xsource

features
Xtarget

label bias
Biased annotations,
interaction, or latent bias
from past classifications.

predict

Source Population

(Model Side)

Target Population

(Application Side)

biased
outcomes

Ŷtarget

fit
features
𝜃embedding

outcome disparity
The distribution of outcomes, given attribute A,
is dissimilar than the ideal distribution:

Q(Ŷt|A) ≁ P(Yt|A)

error disparity
The distribution of error (ϵ) over at least two
different values of an attribute (A) are unequal:

Q(ϵt|Ai) ≁ Q(ϵt|Aj)

Embedding
Corpus

(Pre-trained Side)

outcomes
Ysource

potential origin

consequence

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In
ACL-2020: Proceedings of the Association for Computational Linguistics.

Predictive Bias Framework

features
Xsource

features
Xtarget

label bias
Biased annotations,
interaction, or latent bias
from past classifications.

predict

Source Population

(Model Side)

Target Population

(Application Side)

biased
outcomes

Ŷtarget

fit
features
𝜃embedding

outcome disparity
The distribution of outcomes, given attribute A,
is dissimilar than the ideal distribution:

Q(Ŷt|A) ≁ P(Yt|A)

error disparity
The distribution of error (ϵ) over at least two
different values of an attribute (A) are unequal:

Q(ϵt|Ai) ≁ Q(ϵt|Aj)

Embedding
Corpus

(Pre-trained Side)

outcomes
Ysource

potential origin

consequence

selection bias
The sample of observations
themselves are not representative
of the application population.

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In
ACL-2020: Proceedings of the Association for Computational Linguistics.

Predictive Bias Framework

features
Xsource

features
Xtarget

label bias
Biased annotations,
interaction, or latent bias
from past classifications.

over-amplification
The model discriminates on
a given human attribute
beyond its source base-rate.

predict

Source Population

(Model Side)

Target Population

(Application Side)

biased
outcomes

Ŷtarget

fit
features
𝜃embedding

outcome disparity
The distribution of outcomes, given attribute A,
is dissimilar than the ideal distribution:

Q(Ŷt|A) ≁ P(Yt|A)

error disparity
The distribution of error (ϵ) over at least two
different values of an attribute (A) are unequal:

Q(ϵt|Ai) ≁ Q(ϵt|Aj)

Embedding
Corpus

(Pre-trained Side)

outcomes
Ysource

potential origin

consequence

selection bias
The sample of observations
themselves are not representative
of the application population.

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In
ACL-2020: Proceedings of the Association for Computational Linguistics.

Predictive Bias Framework

features
Xsource

features
Xtarget

label bias
Biased annotations,
interaction, or latent bias
from past classifications.

over-amplification
The model discriminates on
a given human attribute
beyond its source base-rate.

predict

Source Population

(Model Side)

Target Population

(Application Side)

biased
outcomes

Ŷtarget

fit

semantic bias
Non-ideal associations between attributed
lexeme (e.g. gendered pronouns) and
non-attributed lexeme (e.g. occupation).

features
𝜃embedding

outcome disparity
The distribution of outcomes, given attribute A,
is dissimilar than the ideal distribution:

Q(Ŷt|A) ≁ P(Yt|A)

error disparity
The distribution of error (ϵ) over at least two
different values of an attribute (A) are unequal:

Q(ϵt|Ai) ≁ Q(ϵt|Aj)

Embedding
Corpus

(Pre-trained Side)

outcomes
Ysource

potential origin

consequence

selection bias
The sample of observations
themselves are not representative
of the application population.

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In
ACL-2020: Proceedings of the Association for Computational Linguistics.

Predictive Bias Framework

features
Xsource

features
Xtarget

label bias
Biased annotations,
interaction, or latent bias
from past classifications.

over-amplification
The model discriminates on
a given human attribute
beyond its source base-rate.

predict

Source Population

(Model Side)

Target Population

(Application Side)

biased
outcomes

Ŷtarget

fit

semantic bias
Non-ideal associations between attributed
lexeme (e.g. gendered pronouns) and
non-attributed lexeme (e.g. occupation).

features
𝜃embedding

outcome disparity
The distribution of outcomes, given attribute A,
is dissimilar than the ideal distribution:

Q(Ŷt|A) ≁ P(Yt|A)

error disparity
The distribution of error (ϵ) over at least two
different values of an attribute (A) are unequal:

Q(ϵt|Ai) ≁ Q(ϵt|Aj)

Embedding
Corpus

(Pre-trained Side)

outcomes
Ysource

potential origin

consequence

selection bias
The sample of observations
themselves are not representative
of the application population.

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In
ACL-2020: Proceedings of the Association for Computational Linguistics.

E.g. Coreference resolution:
connecting entities to references (i.e. pronouns).

“The doctor told Mary that she had run some blood tests.”

Predictive Bias Framework

Types of bias:

● Outcome Disparity: Predicted distribution given A,
 are dissimilar from ideal distribution given A

○ Selection bias
○ Label bias
○ Over-amplification

● Error Disparity: Predicts less accurate for authors of given demographics.

● Semantic Bias: Representations of meaning store demographic associations.

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In
ACL-2020: Proceedings of the Association for Computational Linguistics.

Ethics in Big Data

Privacy

● Risk Categories:
○ Revealing unintended private information
○ Targeted persuasion

Ethics in Big Data

Privacy

● Risk Categories:
○ Revealing unintended private information
○ Targeted persuasion

● Mitigation strategies:
○ Informed consent -- let participants know
○ Do not share / secure storage
○ Federated learning -- separate and obfuscate to the point of preserving

privacy
○ Transparency in information targeting

“You are being shown this ad because …”

Ethics in Big Data

Human Subjects Research

Observational versus Interventional

Ethics in Big Data

Human Subjects Research

Observational versus Interventional

(The Belmount Report, 1979)

 (i) Distinction of research from practice.
(ii) Risk-Benefit criteria
(iii) Appropriate selection of human subjects for participation in research
(iv) Informed consent in various research settings.

Ethics in Big Data

Post-Exam2 Topics:

1. Research Ethics
2. Useful Plots
3. Machine Learning Cross Validation
4. Convolutional Neural Networks
5. Recurrent Neural Networks
6. Transformer Networks

Useful Plots: For distributions

(Lewinson, 2019)

https://towardsdatascience.com/violin-plots-explained-fb1d115e023d

Useful Plots: Correlation

Scatter Plot: for two variables expected to be associated (with optional regression line)

Correlation Matrix: for comparing associations between many variables (use Bonferroni correction if hyp testing)

(Chartio)

(Liu et al., 2016)

http://wwbp.org/papers/persimages16icwsm.pdf

Useful Plots: Any Values

Bar Plot: To visually compare values
under different selections/conditions.

Line Plot: When one variable has a natural ordering (e.g. time)

(Eichstaedt et al., 2018)(Science sEDiment)

deaths
per
100k

Pearson r

Useful Plots: Prediction

Learning Curve: for plotting error from gradient descent.

ROC Plot: for visualizing true-positive to false-positive rates (used for AUC metric)

for a model with
convex optimization
(i.e. linear regression)

for a model with
non-convex
optimization (i.e.
most deep learning)

(Dabura, 2017)

(PLOT_ROC)
(Eichstaedt et al., 2018)

https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3
https://scikit-learn.org/0.15/auto_examples/plot_roc.html

Post-Exam2 Topics:

1. Research Ethics
2. Useful Plots
3. Machine Learning Cross Validation
4. Convolutional Neural Networks
5. Recurrent Neural Networks
6. Transformer Networks

X
1
 X

2
 X

3
 Y

X
1
 X

2
 X

3
 X

4
 X

5
 X

6
 X

7
 X

8
 X

9
X

10
 X

11
 X

12
 Y

 X
13

 X
14

 X
15

... X
m

Task: Determine a function, f (or parameters to a function) such that f(X) = Y

Supervised Learning

Common Goal: Generalize to new data

Original Data New Data?

Does the
model hold up?

Model

Common Goal: Generalize to new data

Training Data Testing Data

Model

Does the
model hold up?

Training
Data

Testing Data

Model

Develop-
ment
Data

Model

Set training
hyperparameters

Does the
model hold up?

ML: GOAL

Goal: Decent estimate of model accuracy

train testdev

All data

train testdev train

train testdev train

...

Iter 1

Iter 2

Iter 3

….

N-Fold Cross Validation

ptest ptest ptest ptest ptest

test test test testtest

ptest ptest ptest ptest ptest

test test test testtest
observed
dep
variable

estimated
dep
variable

1. Distribute copies of entire dataset
a. Train over all with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound; Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data.

Done very often in practice. Not
talked about much because it’s
mostly as easy as it sounds.

Preferred method for big data or
very complex models (i.e.
models with many internal
parameters).

Data Parellelism

Model Parellelism

Review: Distributed ML

X y
0

batch_size-1

N-batch_size

N

𝛳batch0

𝛳batch1

Combine
parameters

update params of each
node and repeat

Post-Exam2 Topics:

1. Research Ethics
2. Useful Plots
3. Machine Learning Cross Validation
4. Recurrent Neural Networks
5. Convolutional Neural Networks
6. Transformer Networks

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

From Linear Models to Neural Nets

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

(skymind, AI Wiki)

From Linear Models to Neural Nets

z = wX

Logistic: 𝜎(z) = 1 / (1 + e-z)

Hyperbolic tangent: tanh(z) = 2𝜎(2z) - 1 = (e2z - 1) / (e2z + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)

Common Activation Functions

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

(skymind, AI Wiki)

From Linear Models to Neural Nets

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

(skymind, AI Wiki)

Z

Batch Normalization

From Linear Models to Neural Nets

(Ioffe and Szegedy, 2015)

Batch Normalization

(Ioffe and Szegedy, 2015)

This is just standardizing!
(but within the current batch of
observations)

Batch Normalization

X y
0

batch_size-1

N-batch_size

N

Batch Normalization

(Ioffe and Szegedy, 2015)

This is just standardizing!
(but within the current batch of
observations)

Why?
● Empirically, it works!
● Conceptually, generally good

for weight optimization to
keep data within a reasonable
range (dividing by sigma) and
such that positive weights
move it up and negative down
(centering).

● Small effect: When done over
mini-batches, adds
regularization due to
differences between batches.

Batch Normalization

(skymind, AI Wiki)

Z

Feed-Forward
Network

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)

Recurrent Neural Network

...

#define forward pass graph:

h
(0)

= 0

for i in range(1, len(x)):

h
(i)

= tf.tanh(tf.matmul(U,h
(i-1)

)+ tf.matmul(W,x
(i)

)) #update hidden

state

y
(i)

= tf.softmax(tf.matmul(V, h
(i)

)) #update output

...

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

Optimization:

Backward Propagation
through Time

costRNN: Optimization

...

#define forward pass graph:

h
(0)

= 0

for i in range(1, len(x)):

h
(i)

= tf.tanh(tf.matmul(U,h
(i-1)

)+ tf.matmul(W,x
(i)

)) #update hidden

state

y
(i)

= tf.softmax(tf.matmul(V, h
(i)

)) #update output

...

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

Optimization:

Backward Propagation
through Time

cost

To find the gradient for the overall graph, we
use back propogation, which essentially
chains together the gradients for each node
(function) in the graph.

With many recursions, the gradients can
vanish or explode (become too large or
small for floating point operations).

RNN: Optimization

Optimization:

Backward Propagation
through Time

cost

(Geron, 2017)

RNN: Optimization

Dominant approach: Use Long Short Term Memory Networks (LSTM)

RNN model “unrolled” depiction

(Geron, 2017)

How to Addressing Vanishing Gradient?

Gated Recurrent Unit

(Geron, 2017)

RNN: The GRU

The GRU

Gated Recurrent Unit

(Geron, 2017)

relevance gate
update gate

RNN: The GRU

The GRU

Gated Recurrent Unit

(Geron, 2017)

relevance gate
update gate A candidate for updating h,

sometimes called: h~

RNN: The GRU

The GRU

Gated Recurrent Unit

The cake, which contained candles, was eaten.

RNN: The GRU

What about the gradient?
The gates (i.e. multiplications
based on a logistic) often end up
keeping the hidden state exactly
(or nearly exactly) as it was. Thus,
for most dimensions of h,

h(t) ≈ h(t-1)

The cake, which contained candles, was eaten.

What about the gradient?
The gates (i.e. multiplications
based on a logistic) often end up
keeping the hidden state exactly
(or nearly exactly) as it was. Thus,
for most dimensions of h,

h(t) ≈ h(t-1)

This tends to keep the gradient
from vanishing since the same
values will be present through
multiple times in backpropagation
through time. (The same idea
applies to LSTMs but is easier to
see here).

The cake, which contained candles, was eaten.

RNN model “unrolled” depiction

(Geron, 2017)

The GRU (LSTM): Zoomed out
Take-Aways

● Simple RNNs are powerful models but they are difficult to train:

○ Just two functions h
(t)

 and y
(t)

 where h
(t)

is a combination of h
(t-1)

 and x
(t)

.

○ Exploding and vanishing gradients make training difficult to converge.

● LSTM (e.g. GRU cells) solve

○ Hidden states pass from one time-step to the next, allow for long-distance

dependencies.

○ Gates are used to keep hidden states from changing rapidly (and thus keeps

gradients under control).

○ To train: mini-batch stochastic gradient descent over cross-entropy cost

Post-Exam2 Topics:

1. Research Ethics
2. Useful Plots
3. Machine Learning Cross Validation
4. Recurrent Neural Networks
5. Convolutional Neural Networks
6. Transformer Networks

(wikipedia)

Convolutional Neural Networks

(Barter, 2018)

Convolution Layer

(Barter, 2018)

Convolution Layer

Breakthrough in image
classification: Let the
model automatically
learn the filter weights!

Convolution Layer

Subsampling -- reducing total grid size (i.e. reducing parameters for next layer)

(wikipedia)

Subsampling (Pooling)

3 4 2 1

1 6 3 7

4 7 9 0

2 1 7 8

2x2 pooling

3 4 2 1

1 6 3 7

4 7 9 0

2 1 7 8

6

Subsampling -- reducing total grid size (i.e. reducing parameters for next layer)

(wikipedia)

Subsampling (Pooling)

2x2 pooling
Types of pooling
● max
● avg

3 4 2 1

1 6 3 7

4 7 9 0

2 1 7 8

3.5

Subsampling -- reducing total grid size (i.e. reducing parameters for next layer)

(wikipedia)

Subsampling (Pooling)

2x2 pooling
Types of pooling
● max
● avg

RNN_cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

#where did this come from?

Logistic Regression Likelihood:

Log Likelihood:

Log Loss:

Cross-Entropy Cost: (a “multiclass” log loss)

Final Cost Function: -- ”cross entropy error”

Standard Training Loss Function

RNN_cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

#where did this come from?

Logistic Regression Likelihood:

Log Likelihood:

Log Loss:

Cross-Entropy Cost: (a “multiclass” log loss)

Final Cost Function: -- ”cross entropy error”

Standard Training Loss Function

Review:
Feed Forward Network
(full-connected)

(skymind, AI Wiki)

Z

Review

Review:
Convolutional NN

(Barter, 2018)

Review

Post-Exam2 Topics:

1. Research Ethics
2. Useful Plots
3. Machine Learning Cross Validation
4. Recurrent Neural Networks
5. Convolutional Neural Networks
6. Transformer Networks

Review:
Recurrent Neural Network

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)

Review

 FFN CNN RNN

Can model computation (e.g. matrix operations for a single input) be parallelized?

 FFN CNN RNN

Can model computation (e.g. matrix operations for a single input) be parallelized?

 FFN CNN RNN

Can model computation (e.g. matrix operations for a single input) be parallelized?

 FFN CNN RNN

Can model computation (e.g. matrix operations for a single input) be parallelized?

Ultimately limits how complex the model can
be (i.e. it’s total number of
paramers/weights) as compared to a CNN.

Can handle sequences and long-distance dependencies,
but….

● Don’t want complexity of LSTM/GRU cells

● Constant num edges between input steps

● Enables “interactions” (i.e. adaptations) between words

● Easy to parallelize -- don’t need sequential processing.

The Transformer: Attention-only Models

Challenge:

● Long distance dependency when translating:

<go> y(0) y(1) y(2) ….

 y(0) y(1) y(2) y(3) y(4)

Kayla kicked the ball.

The ball was kicked by kayla.

The Transformer: Attention-only Models

Challenge:

● Long distance dependency when translating:

<go> y(0) y(1) y(2) ….

 y(0) y(1) y(2) y(3) y(4)

Kayla kicked the ball.

The ball was kicked by kayla.

The Transformer: Attention-only Models

chi

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4

z1 z2 z3 z4

values

The Transformer: Attention-only ModelsAttention Attention

Attention

chi hi𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4
Score function:

W

z1 z2 z3 z4

values

query

Attention

Attention

s1 s2 s3 s4

chi hi𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4
Score function:

W

z1 z2 z3 z4

values
keys

query

Attention Attention

The Transformer: “Attention-only” models

Challenge:

● Long distance dependency when translating:

Attention came about for encoder decoder models.

Then self-attention was introduced:

Attention AttentionThe Transformer: Attention-only Models

Attention

s1 s2 s3 s4

chi hi𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4
Score function:

W

z1 z2 z3 z4

values

query

keys

Attention Attention

Self-Attention

s1 s2 si s4

ci 𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4
Score function:

W

z1 z2 zi z4

values

keys

qu
ery

Attention Attention

(Eisenstein, 2018)

Attention as weighting a value
based on a query and key:

Self-Attention

s1 s2 si s4

ci 𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4

W

z1 z2 zi z4

values

keys

qu
ery

Attention Attention

The Transformer: “Attention-only” models

(Eisenstein, 2018)

Attention as weighting a value
based on a query and key:

The Transformer: Attention-only Models

(Eisenstein, 2018)

The Transformer: Attention-only Models

CSE 545 Supplemental Lecture
Will begin at 2:00pm

The Transform:

(Eisenstein, 2018)

Output

α

𝜓

h
hi-1 hi hi+1

x

The Transformer: Attention-only Models

Output

α

𝜓

h

The Transformer: “Attention-only” models

(Eisenstein, 2018)

hi-1 hi hi+1

self attention hi

hi-1 hi-1

The Transform:
The Transformer: Attention-only Models

The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1 hi hi+1
hi+2

The Transform: “Attention-only” models
The Transformer: Attention-only Models

The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

 FFN

The Transform: “Attention-only” models
The Transformer: Attention-only Models

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2 ….

yi-1 yi yi+1 yi+2

...

The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

Attend to all hidden states
in your “neighborhood”.

The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

X X X X

+

dot product
dp dp dp

ktq

The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

X X X X

+

dot product
dp dp dp

scaling
parameter

(ktq) σ(k,q)

The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

X X X X

+

dot product
dp dp dp

Linear layer:
WTX

One set of weights for
each of for K, Q, and V

ktq(k,q) (ktq) σ

The Transformer

Limitation (thus far): Can’t capture multiple types of dependencies between words.

The Transformer

Solution: Multi-head attention

Multi-head Attention

Transformer for
Encoder-Decoder

Transformer for
Encoder-Decoder

sequence index (t)

Transformer for
Encoder-Decoder

Transformer for
Encoder-Decoder

Residualized
Connections

Transformer for
Encoder-Decoder

Residualized
Connections

residuals enable
positional
information to be
passed along

Transformer for
Encoder-Decoder

Transformer for
Encoder-Decoder

essentially, a language
model

Transformer for
Encoder-Decoder

essentially, a language
model

Decoder blocks out
future inputs

Transformer for
Encoder-Decoder

essentially, a language
model

Add conditioning of the LM
based on the encoder

Transformer for
Encoder-Decoder

Transformer (as of 2017)

“WMT-2014” Data Set. BLEU scores:

Transformer

● Utilize Self-Attention

● Simple att scoring function (dot product, scaled)

● Added linear layers for Q, K, and V

● Multi-head attention

● Added positional encoding

● Added residual connection

● Simulate decoding by masking

https://4.bp.blogspot.com/-OlrV-PAtEkQ/W3RkOJCBkaI/AAAAAAAADOg/gNZXo_eK3tMNOmIfsuvPzrRfNb3qFQwJwCLcB

GAs/s640/image1.gif

https://4.bp.blogspot.com/-OlrV-PAtEkQ/W3RkOJCBkaI/AAAAAAAADOg/gNZXo_eK3tMNOmIfsuvPzrRfNb3qFQwJwCLcBGAs/s640/image1.gif
https://4.bp.blogspot.com/-OlrV-PAtEkQ/W3RkOJCBkaI/AAAAAAAADOg/gNZXo_eK3tMNOmIfsuvPzrRfNb3qFQwJwCLcBGAs/s640/image1.gif

Transformer
Why?
● Don’t need complexity of LSTM/GRU cells
● Constant num edges between words (or input

steps)
● Enables “interactions” (i.e. adaptations)

between words
● Easy to parallelize -- don’t need sequential

processing.

Drawbacks:
● Only unidirectional by default
● Only a “single-hop” relationship per layer

(multiple layers to capture multiple)

Why?
● Don’t need complexity of LSTM/GRU cells
● Constant num edges between words (or input

steps)
● Enables “interactions” (i.e. adaptations)

between words
● Easy to parallelize -- don’t need sequential

processing.

Drawbacks of Vanilla Transformers:
● Only unidirectional by default
● Only a “single-hop” relationship per layer

(multiple layers to capture multiple)

BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings
(or pre-trained contextualized encoder)

Why?
● Don’t need complexity of LSTM/GRU cells
● Constant num edges between words (or input

steps)
● Enables “interactions” (i.e. adaptations)

between words
● Easy to parallelize -- don’t need sequential

processing.

Drawbacks of Vanilla Transformers:
● Only unidirectional by default
● Only a “single-hop” relationship per layer

(multiple layers to capture multiple)

BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings
(or pre-trained contextualized encoder)

● Bidirectional context by “masking” in the middle
● A lot of layers, hidden states, attention heads.

BERT

Differences from previous state of the art:

● Bidirectional transformer (through masking)
● Directions jointly trained at once.
● Capture sentence-level relations

(Devlin et al., 2019)

tokenize into “word pieces”

Bert: Attention by Layers
https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8

(Vig, 2019)

https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8

BERT Performance: e.g. Question Answering

https://rajpurkar.github.io/SQuAD-explorer/

https://rajpurkar.github.io/SQuAD-explorer/

BERT: Pre-training; Fine-tuning

12 or 24 layers

BERT: Pre-training; Fine-tuning

12 or 24 layers

BERT: Pre-training; Fine-tuning

12 or 24 layers

Novel classifier
(e.g. sentiment classifier; stance detector...etc..)

● Goal is accurate prediction of y (outcome) given features (x)

● Use L1 or L2 penalization (as a regularization) to avoid overfit

● Reason for Train, Dev, Test split

● Components of a neural network

● Batch Normalization

● Distribution options: why is data parallelism preferred?

● Recurrent Neural Network

● Convolution Operation with Filters

Neural Network Summary

Feature Selection / Subset Selection

(bad) solution to overfit problem

Use less features based on Forward Stepwise Selection:

● start with current_model just has the intercept (mean)
remaining_predictors = all_predictors
 for i in range(k):

#find best p to add to current_model:

for p in remaining_prepdictors

refit current_model with p

 #add best p, based on RSS
p
 to current_model

#remove p from remaining predictors

Regularization (Shrinkage)

No selection (weight=beta) forward stepwise

Why just keep or discard features?

Regularization (L2, Ridge Regression)

Idea: Impose a penalty on size of weights:

Ordinary least squares objective:

Ridge regression:

Regularization (L2, Ridge Regression)

Idea: Impose a penalty on size of weights:

Ordinary least squares objective:

Ridge regression:

Regularization (L2, Ridge Regression)

Idea: Impose a penalty on size of weights:

Ordinary least squares objective:

Ridge regression:

In Matrix Form:

I: m x m identity matrix

Regularization (L1, The “Lasso”)

Idea: Impose a penalty and zero-out
 some weights

The Lasso Objective:

Regularization (L1, The “Lasso”)

Idea: Impose a penalty and zero-out
 some weights

The Lasso Objective:

No closed form matrix solution, but
often solved with coordinate descent.

Application: p ≅ n or p >> n (p: features; n: observations)

Cluster Distribution

Multiple devices on multiple machines

Machine A
CPU:0 CPU:1

Machine B
GPU:0

with tf.device(“/cpu:1”)
 beta=tf.Variable(...)

with tf.device(“/gpu:0”)
 y_pred=tf.matmul(beta,X)

Transfer Tensors

Model Parallelism

