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Task:   Determine a function, f (or parameters to a function) such that f(X) = Y

Supervised Learning



session
 defines the environment in  
 which operations run. 
 (like a Spark context)

devices
 the specific devices (cpus or 
 gpus) on which to run the 
 session. 

tensors*
 variables - persistent 
                   mutable tensors
 constants -  constant
 placeholders - from data

operations
 an abstract computation
 (e.g. matrix multiply, add)
 executed by device kernels

graph
* technically, still operations

Spark Overview  Ingredients of a TensorFlow



TensorFlow has built-in ability to derive gradients given a cost function. 

  tf.gradients(cost, [params])
(rasbt, http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/)

Spark Overview Review: Gradient Descent

=|ε|



Linear Regression: Trying to find “betas” that minimize: 
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Linear Regression: Trying to find “betas” that minimize: 

Thus: 

matrix multiply
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Linear Regression: Trying to find “betas” that minimize: 

Thus: 

In standard linear equation: 

(if we add a column of 1s, mx + b is just matmul(m, x))

matrix multiply
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Linear Regression: Trying to find “betas” that minimize: 

Thus: 

How to update?
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Linear Regression: Trying to find “betas” that minimize: 

Thus: 

How to update?

(for gradient descent) “learning rate” 

Spark Overview  Weights Derived from Gradients



Ridge Regression (L2 Penalized linear regression,                 )

1. Matrix Solution:
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Ridge Regression (L2 Penalized linear regression,                 )

1. Matrix Solution:

2. Gradient descent solution
(Mirrors many parameter optimization problems.)
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Ridge Regression (L2 Penalized linear regression,                 )

Gradient descent needs to solve. 
(Mirrors many parameter optimization problems.)

TensorFlow has built-in ability to derive gradients given a cost function. 
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Ridge Regression (L2 Penalized linear regression,                 )

Gradient descent needs to solve. 
(Mirrors many parameter optimization problems.)
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TensorFlow has built-in ability to derive gradients given a cost function. 

  tf.gradients(cost, [params])
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Options for Distributing ML
1. Distribute copies of entire dataset 

a. Train over all  with different hyperparameters
b. Train different folds per worker node.

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data. 
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  Model Parallelism

Multiple devices on multiple machines

Machine A
CPU:0 CPU:1

Machine B
GPU:0

with tf.device(“/cpu:1”)
   beta=tf.Variable(...)

with tf.device(“/gpu:0”)
   y_pred=tf.matmul(beta,X)

Transfer Tensors



  Data Parallelism
...
  beta=tf.Variable(...)
  pred=tf.matmul(beta,X)

CPU:0 CPU:1 GPU:0

...
  beta=tf.Variable(...)
  pred=tf.matmul(beta,X)

...
  beta=tf.Variable(...)
  pred=tf.matmul(beta,X)



...
  beta=tf.Variable(...)
  pred=tf.matmul(beta,X)

worker:0 worker:1 worker:2

...
  beta=tf.Variable(...)
  pred=tf.matmul(beta,X)

...
  beta=tf.Variable(...)
  pred=tf.matmul(beta,X)
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  Distributing Data
X y

0

batch_size-1

N-batch_size

N

𝛳batch0

learn parameters (i.e. weights),
given graph with cost function
and optimizer

𝛳batch1

𝛳batch2

𝛳...
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  Distributing Data
X y

0
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N-batch_size

N

𝛳batch0

𝛳batch1

Combine 
parameters

update params of each node and repeat



(Geron, 2017)
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Batch Gradient Descent

Stochastic Gradient Descent: One example at a time

Mini-batch Gradient Descent: k examples at a time. 

(Geron, 2017)
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Batch Gradient Descent

Stochastic Gradient Descent: One example at a time

Mini-batch Gradient Descent: k examples at a time. 

(Geron, 2017)

  Gradient Descent for Linear Regression



Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow: 
A System for Large-Scale Machine Learning. In OSDI (Vol. 16, pp. 265-283).
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  Distributed TensorFlow

discussed 
previously

next slides



Multiple devices on single machine

CPU:0 CPU:1 GPU:0

Program 1 Program 2

  Local Distribution



Multiple devices on single machine

CPU:0 CPU:1 GPU:0

with tf.device(“/cpu:1”)
   beta=tf.Variable(...)

with tf.device(“/gpu:0”)
   y_pred=tf.matmul(beta,X)

  Local Distribution



Multiple devices on multiple machines

Machine A
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CPU:0 CPU:1 GPU:0CPU:0

Machine A Machine B(Geron, 2017: HOML: p.324)

TF Server TF Server TF Server

    “ps” “worker”
  task 0   task 0 task 1

Master

Worker

Master

Worker

Master

Worker
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CPU:0 CPU:1 GPU:0CPU:0

Machine A Machine B(Geron, 2017: HOML: p.324)

TF Server TF Server TF Server

    “ps” “worker”
  task 0   task 0 task 1

Master

Worker

Master

Worker

Master

Worker

Parameter Server: Job is just to maintain 
values of variables being optimized. 

Workers: do all the numerical “work” and 
send updates to the parameter server.  

  Asynchronous Parameter Server
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TF Server TF Server TF Server

 “Worker” Worker Worker Worker

Master
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Master
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Master

Worker

Workers do computation, send parameter 
updates to other workers, and store parameter 
updates from other workers. Requires low 
latency communication. 

  Synchronous All Reduce



 “Worker” Worker Worker Worker

CPU:0 CPU:1 GPU:0CPU:0

Machine A Machine B(Dowling, 2017: Distributed TensorFlow)

TF Server TF Server TF Server

Master

Worker

Master

Worker

Master

Worker

Workers do computation, send parameter 
updates to other workers, and store parameter 
updates from other workers. Requires low 
latency communication. 

  Synchronous All Reduce



Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow: 
A System for Large-Scale Machine Learning. In OSDI (Vol. 16, pp. 265-283).

  Distributed TF: Full Pipeline



1. Distribute copies of entire dataset 
a. Train over all  with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound;  Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data. 

Done very often in practice. Not 
talked about much because it’s 
mostly as easy as it sounds. 

Preferred method for big data or 
very complex models (i.e. 
models with many internal 
parameters).

Data Parellelism

Model Parellelism

Review: Distributed ML
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Bias

Privacy

Ethical Research Practice

Ethics in Big Data



Types of bias:

● Outcome Disparity:  Predicted distribution given A,
 are dissimilar from ideal distribution given A

○ Selection bias
○ Label bias
○ Over-amplification

● Error Disparity: Predicts less accurate for authors of given demographics.

● Semantic Bias: Representations of meaning store demographic associations. 

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In 
ACL-2020: Proceedings of the Association for Computational Linguistics.

Ethics in Big Data
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model 
accuracy

“Outcome Disparity”

“Error Disparity”

Zhao, Jieyu, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and 
Kai-Wei Chang. "Men Also Like Shopping: Reducing Gender Bias 
Amplification using Corpus-level Constraints." In Proceedings of 
the 2017 Conference on Empirical Methods in Natural Language 
Processing. 2017.
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Predictive Bias Framework

features
Xtarget

predict

Target Population 

(Application Side)

biased 
outcomes

Ŷtarget

outcome disparity
The distribution of outcomes, given attribute A, 
is dissimilar than the ideal distribution: 

Q(Ŷt|A) ≁ P(Yt|A)

error disparity
The distribution of error (ϵ) over at least two 
different values of an attribute (A) are unequal: 

Q(ϵt|Ai) ≁ Q(ϵt|Aj)

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In 
ACL-2020: Proceedings of the Association for Computational Linguistics.
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predict
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features
𝜃embedding
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is dissimilar than the ideal distribution: 
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error disparity
The distribution of error (ϵ) over at least two 
different values of an attribute (A) are unequal: 

Q(ϵt|Ai) ≁ Q(ϵt|Aj)

Embedding
Corpus

(Pre-trained Side)

outcomes
Ysource

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In 
ACL-2020: Proceedings of the Association for Computational Linguistics.
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E.g. Coreference resolution: 
connecting entities to references (i.e. pronouns). 

“The doctor told Mary that she had run some blood tests.”

Predictive Bias Framework
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Privacy

● Risk Categories: 
○ Revealing unintended private information 
○ Targeted persuasion

● Mitigation strategies:
○ Informed consent -- let participants know
○ Do not share / secure storage
○ Federated learning -- separate and obfuscate to the point of preserving 

privacy
○ Transparency in information targeting 

“You are being shown this ad because …”

Ethics in Big Data



Human Subjects Research

Observational versus Interventional

Ethics in Big Data



Human Subjects Research

Observational versus Interventional

(The Belmount Report,  1979)

 (i) Distinction of research from practice. 
(ii) Risk-Benefit criteria 
(iii) Appropriate selection of human subjects for participation in research 
(iv) Informed consent in various research settings.

Ethics in Big Data
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Useful Plots: For distributions

(Lewinson, 2019)

https://towardsdatascience.com/violin-plots-explained-fb1d115e023d


Useful Plots: Correlation

Scatter Plot: for two variables expected to be associated (with optional regression line)

Correlation Matrix: for comparing associations between many variables (use Bonferroni correction if hyp testing)

(Chartio)

(Liu et al., 2016)

http://wwbp.org/papers/persimages16icwsm.pdf


Useful Plots: Any Values

Bar Plot: To visually compare values 
under different selections/conditions. 

Line Plot: When one variable has a natural ordering (e.g. time)

(Eichstaedt et al., 2018)(Science sEDiment)

deaths 
per 
100k

Pearson r



Useful Plots: Prediction

Learning Curve: for plotting error from gradient descent.

ROC Plot: for visualizing true-positive to false-positive rates (used for AUC metric)

for a model with 
convex optimization 
(i.e. linear regression)

for a model with 
non-convex 
optimization (i.e. 
most deep learning)

(Dabura, 2017)

(PLOT_ROC)
(Eichstaedt et al., 2018)

https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3
https://scikit-learn.org/0.15/auto_examples/plot_roc.html
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Task:   Determine a function, f (or parameters to a function) such that f(X) = Y

Supervised Learning



Common Goal: Generalize to new data

Original Data New Data?

Does the 
model hold up?

Model



Common Goal: Generalize to new data

Training Data Testing Data

Model

Does the 
model hold up?



Training 
Data

Testing Data

Model

Develop-
ment
Data

Model

Set training 
hyperparameters

Does the 
model hold up?

ML: GOAL



Goal: Decent estimate of model accuracy

train testdev

All data

train testdev train

train testdev train

...

Iter 1

Iter 2

Iter 3

….

N-Fold Cross Validation

ptest ptest ptest ptest ptest

test test test testtest



ptest ptest ptest ptest ptest

test test test testtest
observed 
dep
variable

estimated
dep 
variable



1. Distribute copies of entire dataset 
a. Train over all  with different parameters
b. Train different folds per worker node.

Pro: Easy; Good for compute-bound;  Con: Requires data fit in worker memories

2. Distribute data
a. Each node finds parameters for subset of data
b. Needs mechanism for updating parameters

i. Centralized parameter server
ii. Distributed All-Reduce

Pro: Flexible to all situations; Con: Optimizing for subset is suboptimal

3. Distribute model or individual operations (e.g. matrix multiply)

Pro: Parameters can be localized Con: High communication for transferring
Intermediar data. 

Done very often in practice. Not 
talked about much because it’s 
mostly as easy as it sounds. 

Preferred method for big data or 
very complex models (i.e. 
models with many internal 
parameters).

Data Parellelism

Model Parellelism

Review: Distributed ML



X y
0

batch_size-1

N-batch_size

N

𝛳batch0

𝛳batch1

Combine 
parameters

update params of each 
node and repeat
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Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

From Linear Models to Neural Nets



Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

(skymind, AI Wiki)

From Linear Models to Neural Nets



z = wX

Logistic:  𝜎(z) = 1 / (1 + e-z)

Hyperbolic tangent: tanh(z) = 2𝜎(2z) - 1 = (e2z - 1) / (e2z + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)

Common Activation Functions



Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

(skymind, AI Wiki)

From Linear Models to Neural Nets



Linear Regression: y = wX

Neural Network Nodes: output = f(wX)

(skymind, AI Wiki)

Z

Batch Normalization

From Linear Models to Neural Nets



(Ioffe and Szegedy, 2015)

Batch Normalization



(Ioffe and Szegedy, 2015)

This is just standardizing!
(but within the current batch of 
observations)

Batch Normalization



X y
0

batch_size-1

N-batch_size

N

Batch Normalization



(Ioffe and Szegedy, 2015)

This is just standardizing!
(but within the current batch of 
observations)

Why? 
● Empirically, it works!
● Conceptually, generally good 

for weight optimization to 
keep data within a reasonable 
range (dividing by sigma) and 
such that positive weights 
move it up and negative down 
(centering). 

● Small effect: When done over 
mini-batches, adds 
regularization due to 
differences between batches.

Batch Normalization



(skymind, AI Wiki)

Z

Feed-Forward 
Network



(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)

Recurrent Neural Network



...

#define forward pass graph:

h
(0) 

= 0

for i in range(1, len(x)):

h
(i) 

= tf.tanh(tf.matmul(U,h
(i-1)

)+ tf.matmul(W,x
(i)

)) #update hidden 

state

y
(i) 

= tf.softmax(tf.matmul(V, h
(i)

)) #update output

...

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

Optimization:

Backward Propagation
through Time 

costRNN: Optimization



...

#define forward pass graph:

h
(0) 

= 0

for i in range(1, len(x)):

h
(i) 

= tf.tanh(tf.matmul(U,h
(i-1)

)+ tf.matmul(W,x
(i)

)) #update hidden 

state

y
(i) 

= tf.softmax(tf.matmul(V, h
(i)

)) #update output

...

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

Optimization:

Backward Propagation
through Time 

cost

To find the gradient for the overall graph, we 
use back propogation, which essentially 
chains together the gradients for each node 
(function) in the graph.

With many recursions, the gradients can 
vanish or explode (become too large or 
small for floating point operations).  

RNN: Optimization



Optimization:

Backward Propagation
through Time 

cost

(Geron, 2017)

RNN: Optimization



Dominant approach: Use Long Short Term Memory Networks (LSTM)

RNN model “unrolled” depiction

(Geron, 2017)

How to Addressing Vanishing Gradient?



Gated Recurrent Unit

(Geron, 2017)

RNN: The GRU



The GRU

Gated Recurrent Unit

(Geron, 2017)

relevance gate
update  gate

RNN: The GRU



The GRU

Gated Recurrent Unit

(Geron, 2017)

relevance gate
update  gate A candidate for updating h, 

sometimes called: h~

RNN: The GRU



The GRU

Gated Recurrent Unit

The cake, which contained candles, was eaten. 

RNN: The GRU



What about the gradient?
The gates (i.e. multiplications 
based on a logistic) often end up 
keeping the hidden state exactly 
(or nearly exactly) as it was. Thus, 
for most dimensions of h, 

h(t) ≈ h(t-1)  

The cake, which contained candles, was eaten. 



What about the gradient?
The gates (i.e. multiplications 
based on a logistic) often end up 
keeping the hidden state exactly 
(or nearly exactly) as it was. Thus, 
for most dimensions of h, 

h(t) ≈ h(t-1)  

This tends to keep the gradient 
from vanishing since the same 
values will be present through 
multiple times in backpropagation 
through time. (The same idea 
applies to LSTMs but is easier to 
see here). 

The cake, which contained candles, was eaten. 



RNN model “unrolled” depiction

(Geron, 2017)

The GRU (LSTM): Zoomed out
Take-Aways

● Simple RNNs are powerful models but they are difficult to train: 

○ Just two functions h
(t)

 and y
(t)

 where h
(t) 

is a combination of h
(t-1)

 and x
(t)

.

○ Exploding and vanishing gradients make training difficult to converge. 

● LSTM (e.g. GRU cells) solve

○ Hidden states pass from one time-step to the next, allow for long-distance 

dependencies. 

○ Gates are used to keep hidden states from changing rapidly (and thus keeps 

gradients under control). 

○ To train: mini-batch stochastic gradient descent over cross-entropy cost
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(wikipedia)

Convolutional Neural Networks



(Barter, 2018)

Convolution Layer



(Barter, 2018)

Convolution Layer



Breakthrough in image 
classification: Let the 
model automatically 
learn the filter weights! 

Convolution Layer



Subsampling -- reducing total grid size (i.e. reducing parameters for next layer)

(wikipedia)

Subsampling (Pooling)

3 4 2 1

1 6 3 7

4 7 9 0

2 1 7 8

2x2 pooling



3 4 2 1

1 6 3 7

4 7 9 0

2 1 7 8

6

Subsampling -- reducing total grid size (i.e. reducing parameters for next layer)

(wikipedia)

Subsampling (Pooling)

2x2 pooling
Types of pooling
● max
● avg



3 4 2 1

1 6 3 7

4 7 9 0

2 1 7 8

3.5

Subsampling -- reducing total grid size (i.e. reducing parameters for next layer)

(wikipedia)

Subsampling (Pooling)

2x2 pooling
Types of pooling
● max
● avg



RNN_cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred)) 

#where did this come from? 

Logistic Regression Likelihood:

Log Likelihood:  

Log Loss: 

Cross-Entropy Cost: (a “multiclass” log loss)

Final Cost Function:  -- ”cross entropy error”

Standard Training Loss Function



RNN_cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred)) 

#where did this come from? 

Logistic Regression Likelihood:

Log Likelihood:  

Log Loss: 

Cross-Entropy Cost: (a “multiclass” log loss)

Final Cost Function:  -- ”cross entropy error”

Standard Training Loss Function



Review:
Feed Forward Network
(full-connected)

(skymind, AI Wiki)

Z

Review



Review:
Convolutional NN

(Barter, 2018)

Review
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Review: 
Recurrent Neural Network

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)

Review



   FFN    CNN  RNN

Can model computation (e.g. matrix operations for a single input) be parallelized?



   FFN    CNN  RNN
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   FFN    CNN  RNN

Can model computation (e.g. matrix operations for a single input) be parallelized?



   FFN    CNN  RNN

Can model computation (e.g. matrix operations for a single input) be parallelized?

Ultimately limits how complex the model can 
be (i.e. it’s total number of 
paramers/weights) as compared to a CNN.



Can handle sequences and long-distance dependencies, 
but….

● Don’t want complexity of LSTM/GRU cells 

● Constant num edges between input steps

● Enables “interactions” (i.e. adaptations) between words

● Easy to parallelize -- don’t need sequential processing.

The Transformer: Attention-only Models



Challenge: 

● Long distance dependency when translating:

<go>                    y(0)                            y(1)                          y(2)                ….

      y(0)                            y(1)                          y(2)                  y(3)                         y(4)

Kayla kicked the ball. 

The ball was kicked by kayla.

The Transformer: Attention-only Models



Challenge: 

● Long distance dependency when translating:

<go>                    y(0)                            y(1)                          y(2)                ….

      y(0)                            y(1)                          y(2)                  y(3)                         y(4)

Kayla kicked the ball. 

The ball was kicked by kayla.

The Transformer: Attention-only Models
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The Transformer: Attention-only ModelsAttention Attention



Attention

chi hi𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4
Score function:

W

z1 z2 z3 z4

values

query

Attention
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The Transformer: “Attention-only” models

Challenge: 

● Long distance dependency when translating:

Attention came about for encoder decoder models.

Then self-attention was introduced:

Attention AttentionThe Transformer: Attention-only Models



Attention
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Attention Attention



Self-Attention

s1 s2 si s4

ci 𝜓
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3
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4
Score function:
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Attention Attention



(Eisenstein, 2018)

Attention as weighting a value 
based on a query and key:

Self-Attention

s1 s2 si s4
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1
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3
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4

W

z1 z2 zi z4

values
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Attention Attention



The Transformer: “Attention-only” models

(Eisenstein, 2018)

Attention as weighting a value 
based on a query and key:

The Transformer: Attention-only Models



(Eisenstein, 2018)

The Transformer: Attention-only Models

CSE 545 Supplemental Lecture
Will begin at 2:00pm



The Transform: 

(Eisenstein, 2018)

Output

α

𝜓

h
hi-1      hi                hi+1

x

The Transformer: Attention-only Models



Output

α

𝜓

h

The Transformer: “Attention-only” models

(Eisenstein, 2018)

hi-1      hi                hi+1

self attention hi

hi-1 hi-1

The Transform:
The Transformer: Attention-only Models



The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1      hi                hi+1
hi+2

The Transform: “Attention-only” models
The Transformer: Attention-only Models



The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1      hi                hi+1
hi+2wi-1      wi                wi+1 wi+2

     FFN               

The Transform: “Attention-only” models
The Transformer: Attention-only Models
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The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1      hi                hi+1
hi+2wi-1      wi                wi+1 wi+2     ….

yi-1      yi                yi+1 yi+2   

...



The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1      hi                hi+1
hi+2wi-1      wi                wi+1 wi+2

yi-1      yi                yi+1 yi+2

Attend to all hidden states 
in your “neighborhood”. 



The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1      hi                hi+1
hi+2wi-1      wi                wi+1 wi+2

yi-1      yi                yi+1 yi+2

X X X X

+

dot product
dp dp dp

ktq



The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1      hi                hi+1
hi+2wi-1      wi                wi+1 wi+2

yi-1      yi                yi+1 yi+2

X X X X

+

dot product
dp dp dp

scaling 
parameter

(ktq) σ(k,q)



The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1      hi                hi+1
hi+2wi-1      wi                wi+1 wi+2

yi-1      yi                yi+1 yi+2

X X X X

+

dot product
dp dp dp

Linear layer:
WTX

One set of weights for 
each of for K, Q, and V

ktq(k,q) (ktq) σ



The Transformer

Limitation (thus far): Can’t capture multiple types of dependencies between words. 



The Transformer

Solution: Multi-head attention



Multi-head Attention



Transformer for
Encoder-Decoder



Transformer for
Encoder-Decoder

sequence index (t)



Transformer for
Encoder-Decoder



Transformer for
Encoder-Decoder

Residualized 
Connections



Transformer for
Encoder-Decoder

Residualized 
Connections

residuals enable 
positional 
information to be 
passed along



Transformer for
Encoder-Decoder



Transformer for
Encoder-Decoder

essentially, a language 
model



Transformer for
Encoder-Decoder

essentially, a language 
model

Decoder blocks out
future inputs



Transformer for
Encoder-Decoder

essentially, a language 
model

Add conditioning of the LM 
based on the encoder



Transformer for
Encoder-Decoder



Transformer (as of 2017)

“WMT-2014” Data Set. BLEU scores: 



Transformer

● Utilize Self-Attention

● Simple att scoring function (dot product, scaled)

● Added linear layers for Q, K, and V

● Multi-head attention

● Added positional encoding

● Added residual connection

● Simulate decoding by masking

https://4.bp.blogspot.com/-OlrV-PAtEkQ/W3RkOJCBkaI/AAAAAAAADOg/gNZXo_eK3tMNOmIfsuvPzrRfNb3qFQwJwCLcB

GAs/s640/image1.gif

https://4.bp.blogspot.com/-OlrV-PAtEkQ/W3RkOJCBkaI/AAAAAAAADOg/gNZXo_eK3tMNOmIfsuvPzrRfNb3qFQwJwCLcBGAs/s640/image1.gif
https://4.bp.blogspot.com/-OlrV-PAtEkQ/W3RkOJCBkaI/AAAAAAAADOg/gNZXo_eK3tMNOmIfsuvPzrRfNb3qFQwJwCLcBGAs/s640/image1.gif


Transformer
Why?
● Don’t need complexity of LSTM/GRU cells 
● Constant num edges between words (or input 

steps)
● Enables “interactions” (i.e. adaptations) 

between words
● Easy to parallelize -- don’t need sequential 

processing.

Drawbacks:
● Only unidirectional by default
● Only a “single-hop” relationship per layer

(multiple layers to capture multiple)
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BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings 
(or pre-trained contextualized encoder)



Why?
● Don’t need complexity of LSTM/GRU cells 
● Constant num edges between words (or input 

steps)
● Enables “interactions” (i.e. adaptations) 

between words
● Easy to parallelize -- don’t need sequential 

processing.

Drawbacks of Vanilla Transformers:
● Only unidirectional by default
● Only a “single-hop” relationship per layer

(multiple layers to capture multiple)

BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings 
(or pre-trained contextualized encoder)

● Bidirectional context by “masking” in the middle
● A lot of layers, hidden states, attention heads. 



BERT

Differences from previous state of the art:

● Bidirectional transformer (through masking)
● Directions jointly trained at once. 
● Capture sentence-level relations

(Devlin et al., 2019)

tokenize into “word pieces”



Bert: Attention by Layers
https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8

(Vig, 2019)

https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8


BERT Performance: e.g. Question Answering

https://rajpurkar.github.io/SQuAD-explorer/

https://rajpurkar.github.io/SQuAD-explorer/


BERT: Pre-training; Fine-tuning

12 or 24 layers



BERT: Pre-training; Fine-tuning

12 or 24 layers



BERT: Pre-training; Fine-tuning

12 or 24 layers

Novel classifier
(e.g. sentiment classifier; stance detector...etc..)



● Goal is accurate prediction of y (outcome) given features (x)

● Use L1 or L2 penalization (as a regularization) to avoid overfit

● Reason for Train, Dev, Test split

● Components of a neural network

● Batch Normalization

● Distribution options: why is data parallelism preferred?

● Recurrent Neural Network

● Convolution Operation with Filters

Neural Network Summary



Feature Selection / Subset Selection

(bad) solution to overfit problem

Use less features based on Forward Stepwise Selection:

● start with current_model just has the intercept (mean)
remaining_predictors = all_predictors
  for i in range(k):

#find best p to add to current_model:

for p in remaining_prepdictors

refit current_model with p

       #add best p, based on RSS
p
 to current_model

#remove p from remaining predictors



Regularization (Shrinkage)

No selection (weight=beta) forward stepwise

Why just keep or discard features? 



Regularization (L2, Ridge Regression)

Idea: Impose a penalty on size of weights:

Ordinary least squares objective:

Ridge regression:



Regularization (L2, Ridge Regression)

Idea: Impose a penalty on size of weights:

Ordinary least squares objective:
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Regularization (L2, Ridge Regression)

Idea: Impose a penalty on size of weights:

Ordinary least squares objective:

Ridge regression:

In Matrix Form:

I: m x m identity matrix



Regularization (L1, The “Lasso”)

Idea: Impose a penalty and zero-out
  some weights

The Lasso Objective:



Regularization (L1, The “Lasso”)

Idea: Impose a penalty and zero-out
  some weights

The Lasso Objective:

No closed form matrix solution, but 
often solved with coordinate descent.

Application:   p ≅ n   or   p >> n         (p: features; n: observations)



Cluster Distribution

Multiple devices on multiple machines

Machine A
CPU:0 CPU:1

Machine B
GPU:0

with tf.device(“/cpu:1”)
   beta=tf.Variable(...)

with tf.device(“/gpu:0”)
   y_pred=tf.matmul(beta,X)

Transfer Tensors

Model Parallelism


